

Engineering Guide

Index

Material Descriptions	2-4
Industrial Standards	5-12
Relative Properties	
Systems Engineering for Thermoplastic Piping	
Above-Ground Installation	
Below-Ground Installation	
Hydrostatic Pressure Testing	40
Installation of Thermoplastics	41-42
Solvent Cementing	43-47
Threading	
Flanged Joints	50-51
Conversion Charts	
Glossary of Piping Terms	59-61

MATERIAL DESCRIPTION

POLYVINYLS

PVC (POLYVINYL CHLORIDE) is, by far, the most common plastic material used for plastic pipe. Its basic properties are chemical inertness, corrosion and weather resistance, high strength to weight ratio, electrical and thermal insulators. The service temperature is 140°F. PVC has been used successfully for 40 years in such areas as chemical processing, industrial plating, chilled water distribution, deionized water, and chemical drainage. Care should be taken to avoid using with Ketones, Chlorinated Hydrocarbons, and Aromatic Solvents. Joining methods are solvent welding, threading (Schedule 80 only), or flanging.

CPVC (CHLORINATED POLYVINYL CHLORIDE) is

particularly useful for handling corrosive fluids at temperatures up to 210°F. In chemical resistance, it is comparable to PVC. It weighs about one-sixth as much as copper, will not sustain combustion (self-extinguishing), and has low thermal conductivity. Suggested uses include process piping for hot, corrosive liquids, hot and cold water lines in office buildings and residences; and similar applications above the temperature range of PVC. CPVC pipe may be joined by solvent welding, threading, or flanging.

POLYOLEFINS

POLYPROPYLENE (HOMOPOLYMER) is the lightest thermoplastic piping material, yet it has considerable strength, outstanding chemical resistance, and may be used at temperatures up to 180°F in drainage applications. Polypropylene is an excellent material for laboratory and industrial drainage piping where mixtures of acids, bases, and solvents are involved. It has found wide application in the petroleum industry where its resistance to sulfur-bearing compounds is particularly useful in salt water disposal line, chill water loops, and demineralized water. Joining methods are coil fusion and socket heat welding.

COPOLYMER POLYPROPYLENE is a copolymer of propylene and polybutylene. It is made of high molecular weight copolymer polypropylene and possesses excellent dielectric and insulating properties because of its structure as a nonpolar hydrocarbon polymer. It combines high chemical resistance with toughness and strength at operating temperatures from freezing to 200°F. It has excellent abrasion resistance and good elasticity, and is joined by butt and socket fusion.

POLYETHYLENE Generally described in three classifications according to the relative degree of branching (side chain formation) in their molecular structures and density.

Low Density Polyethylene (LDPE) has more extensive branching resulting in less compact molecular structures and lower mechanical strength, than other Polyethylenes. Good for temperatures to 140°F and is frequently used for food handling equipment, brine tanks and dispensing equipment. It may be hot gas welded if required.

High Density Polyethylene (HDPE) has minimal branching, which makes it more rigid and less permeable than LDPE. Good for temperatures to 160°F and is frequently used for abrasion resistant piping, caustic storage tanks, and control tubing. It may be hot gas welded.

Cross-Linked High Density Polyethylene (XLPE) is a three dimensional Polymer of extremely high molecular weight with individual molecular chains bonded together using heat plus chemicals or radiation. This structure provides superior environmental stress-crack resistance and extremely high impact strength. Cross-linked Polyethylene becomes a thermoset material after manufacturing and cannot be hot gas welded. Good for temperatures to 160°F with most common uses including large tanks for outdoor service.

All Polyethylene have excellent chemical resistance to a wide range of common chemicals. Avoid strong oxidizing agents and solvents.

FLUOROPLASTICS

PVDF (POLYVINYLIDENE FLUORIDE) is a strong, tough, and abrasion-resistant fluoroplastic material. It resists distortion and retains most of its strength to 280°F. As well as being ideally suited to handle wet and dry chlorine, bromine, and other halogens, it also withstands most acids, bases, and organic solvents. PVDF is not recommended for strong caustics. It is most widely recognized as the material of choice for high purity piping such as deionized water. PVDF is joined by thermal butt, socket, or electrofusion.

HALAR® (ECTFE) ETHYLENE CHLOROTRIFLUORO

ETHYLENE) is a durable copolymer of ethylene and chlorofluoroethylene with excellent resistance to a wide variety of strong acids, chlorine, solvents, and aqueous caustics. Halar has excellent abrasion resistance, electric properties, low permeability, temperature capabilities from cryogenic to 340°F, and radiation resistance. Halar has excellent application for high purity hydrogen peroxide and is joined by thermal butt fusion.

PTFE (POLYTETRAFLUORETHYLENE)

There are three members of the PTFE family of resins. This fluoropolymer offers the most unique and useful characteristics of all plastic materials. Products made from this resin handle liquids or gases up to 500°F. The unique properties of this resin prohibit extrusion or injection molding by conventional methods. When melted PTFE does not flow like other thermoplastics and it must be shaped initially by techniques similar to powder metallurgy. Normally PTFE is an opaque white material. Once sintered it is machined to the desired part.

MATERIAL DESCRIPTION

FEP (FLUORINATED ETHYLENE PROPYLENE) was

also invented by DuPont and became a commercial product in 1960. FEP is a true thermoplastic that can be melt-extruded and fabricated by conventional methods. This allows for more flexibility in manufacturing. The dielectric properties and chemical resistance are similar to PTFE, but the temperature limits are -65°F to a maximum of 300°F. FEP has a glossy surface and is transparent in thin sections. It eventually becomes translucent as thickness increases. FEP is the mostly transparent and is widely used for its high ultraviolet light transmitting ability.

PFA (PERFLUOROALKOXY) is similar to PTFE and FEP.

It has excellent melt-processability and properties rivaling or exceeding those of PTFE. PFA permits conventional thermoplastic molding and extrusion processing at high rates and also has higher mechanical strength at elevated temperatures to 500°F. Premium grade PFA offers superior stress and crack resistance with good flex-life in tubing. It is generally not as permeable as PTFE.

ETFE (TEFZEL®, ETHYLENE TETRAFLUORO-

ETHYLENE) Tefzel® combines the mechanical toughness with outstanding chemical resistance that approaches PTFE. Effective from -20°F to 300°F, Tefzel is known for its processability and high energy radiation resistance.

ABS (ACRYLONITRILE-BUTADIENE-STYRENE)

Identifies a broad family of engineering thermoplastics with a range of performance characteristics. The copolymeric system can be blended to yield the optimum balance of properties suited to a selected end use. Acrylonitrile imparts chemical resistance and rigidity. Butadiene endows the product with impact strength and toughness, while Styrene contributes to ease of processing.

RYTON® (PPS) POLYPHENYLENE SULFIDE PPS

exhibits outstanding high temperature stability, inherent flame resistance and good chemical resistance. Because of its high crystallinity and dimensional stability, PPS is used extensively for molded pump and valve components. Relatively few chemicals react with PPS, even at temperatures up to 200°F. PPS is compatible with such hostile environments as esters, ketones, alcohols, bases and hydrocarbons.

SULFONE POLYMERS

Polysulfone is a tough, clear thermoplastic used in corrosive environments. It has a temperature range to 300°F. Polysulfone has high resistance to acids, alkali, and salt solution but is attacked by ketones, chlorinated hydrocarbons and aromatic hydrocarbons. Polysulfone has found wide usage as flowmeters and sight gauges.

ELASTOMERIC MATERIALS

VITON[®] (FLUOROELASTOMER) is inherently compatible with a broad spectrum of chemicals. Because of this

extensive chemical compatibility which spans considerable concentration and temperature ranges, Viton has gained wide acceptance as a sealing for valves, pumps, and instrumentation. Viton can be used in most applications involving mineral acids, salt solutions, chlorinated hydrocarbons, and petroleum oils. Its maximum temperature limit is 250°F.

EPDM (ETHYLENE PROPYLENE TERPOLYMER) is a

terpolymer elastomer made from ethylene-propylene diene monomer. EPDM has good abrasion and tear resistance and offers excellent chemical resistance to a variety of acids and alkalies. It is susceptible to attack by oils and is not recommended for applications involving petroleum oils, strong acids, or strong alkalies. Its maximum temperature limit is 212°F

HYTREL is a multipurpose polyester elastomer similar to vulcanized thermoset rubber. Its chemical resistance is comparable to Neoprene, Buna-N and EPDM; however, it is a tougher material and does not require fabric reinforcement as do the other three materials. Temperature limits are -10°F minimum to 190°F maximum. This material is used primarily for pump diaphragms.

NITRILE (BUNA-N) Nitrile rubber is a copolymer of butadiene and acrylonitrile. In addition to its excellent elastomeric properties, it is resistant to aliphatic hydrocarbons and aromatic solvents. Its maximum temperature is 212°F.

HYPALON® This is the DuPont name for its elastomer of chlorosulfonated polyethylene used for valve seats and seals. Its maximum temperature limit is 212°F.

NEOPRENE A chlorinated synthetic rubber used primarily as a seating and sealing material in valves, its maximum temperature limit is 212°F.

NATURAL RUBBER This is a high molecular weight polymer isoprene derived from the Hevea tree. It is used as diaphragm and sealing material because of its elastomeric properties and resistance to abrasion. Its maximum temperature limit is 212°F.

THERMOSETS

FRP (FIBERGLASS REINFORCED PLASTICS) OR RTRP (REINFORCED THERMOSETTING RESIN PIPE)

FRP piping is a highly valuable engineering material for process piping and vessels. It has been accepted by many industries because it offers the following significant advantages, (1) moderate initial cost and low maintenance (2) broad range of chemical resistance (3) high strength-toweight ratio (4) ease of fabrication and flexibility of design and (5) good electrical insulation properties.

MATERIAL DESCRIPTION

Epoxy glass fiber pipe exhibits all the above mentioned characteristics as well as performance temperatures to 300°F. Epoxy piping is commonly used in the oil, mining and chemical industries. New application in the geothermal and steam condensate systems have also proven successful.

Vinylester resins are epoxy-based thermosetting resins that are cured by free radical polymerization similar to the curing mechanism of conventional polyester resins. Physical properties are tensile strength, elongation and fatigue resistance very close to those of the premiums aromatic amine cured epoxies. Chemical resistance represents the best of two worlds; the excellent alkali resistance of the epoxy and the acid and oxidation chemical resistance of the polyester.

Because plastic piping and plastic lined metallic piping are used for so many applications and because the requirements for each application are somewhat different, numerous standards and a variety of joining systems have been developed. Additional standards are being prepared and will be added to this list in future revisions as they become available.

The standards referenced herein, like all other standards, are of necessity minimum requirements. It should be recognized that two different plastic resin materials even though of the same kind, type, and grade, will not exhibit identical physical and chemical properties. Therefore, the plastic pipe purchaser is advised to obtain specific values or requirements for the aforementioned tests from the resin supplier to assure optimum pipe from a particular material. In case of a material not covered by industry specifications, this suggestion assumes paramount importance.

ANSI

American National Standards Institute, Inc. 655 15th St. N.W. 300 Metropolitan Square Washington, DC 20005 Phone (202) 639-4090

ANSI PRESSURE CLASSES

ANSI Class 125 means 175 PSIG at 100°F ANSI Class 150 means 285 PSIG at 100°F ANSI Class 300 means 740 PSIG at 100°F ANSI A119.2 - 1963 ANSI B72.2 - 1967 ANSI B31.8 - 1968 ANSI Z21.30 - 1969

The following ASTM standards have been accepted by ANSI and assigned the following designations.

Table 1

ANSI Designation			ASTM Designation		
B72.1	D 2239	B 72.11	D 2412		
B72.2	D 2241	B 72.12	D 2446		
B72.3	D 2282	B 72.13	D 2447		
B72.4	D 1503	B 72.16	D 2564		
B72.5	D 1527	B 72.17	D 2657		
B72.6	D 1598	B 72.18	D 2661		
B72.7	D 1785	B 72.19	D 2662		
B72.8	D 2104	B 72.20	D 2672		
B72.9	D 2152	B 72.22	D 2740		
B72.10	D 2153	B 72.23	D 2235		

ASTM

American Society of Testing and Materials 1916 Race Street Philadelphia, Pennsylvania 19103

Plastic Pipe Specifications:

Plas	tic Pipe S	pecifications:
D	1785	Polyvinyl chloride (PVC) plastic pipe,
		schedules 40, 80, and 120
F	441	Chlorinated poly (vinyl chloride) (CPVC)
-	00.44	plastic pipe, schedules 40 and 80
D	2241	Polyvinyl chloride (PVC) plastic pipe (SD - PR)
D	2513	Thermoplastic gas pressure pipe, tubing
_		and fittings
D	2665	PVC plastic drain, waste, and vent pipe and fittings
D	2672	Bell-ended PVC pipe
D	2729	PVC sewer pipe and fittings
D	2846	Chlorinated (CPVC) plastic hot water
		distribution system
D	2949	3" thin wall PVC plastic drain, waste, and vent pipe and fittings
D	3034	Type PSM PVC sewer pipe and fittings
Plas	tic Pipe	Fittings Specifications:
D	2464	Threaded PVC plastic pipe fittings,
		Schedule 80
F	437	Threaded chlorinated polyvinyl chloride
-	0.400	(CPVC) plastic pipe fittings, Schedule 80
D	2466	Socket-type PVC plastic type fittings, Schedule 40
D	2467	Schedule 40 Socket-type PVC plastic type fittings,
D	2407	Schedule 80
F	439	Socket-type chlorinated polyvinyl chloride
		(CPVC) plastic pipe fittings Schedule 80
D	3036	PVC plastic pipe lined couplings, socket
		type
		Solvent Cement/Primer
	cificatio	
D	2564	Solvent cements for PVC plastic pipe and fittings
F	493	CPVC solvent cement
F	656	Primers for PVC/CPVC pipe and fitting
		joints
Plas	tic Lined	Steel Piping Specifications:
		Standard specification for electric-welded
		low carbon steel pipe for the chemical industry
٨٩٦	M A-53	Standard specification for pipe, steel,
7011	W A-33	black and hot-dipped, zinc-coated,
		welded and seamless
ASTI	M A-105	Standard specification for forgings,
		carbon steel, for piping components
ASTI	VI A-125	Standard specification for steel springs,
		helical, heat-treated
ASTI	M A-126	Standard specifications for gray iron

STM A-126 Standard specifications for gray iron castings for valves, flanges, and pipe fittings

AST	M A-395	Standard specification for ferritic ductile iron pressure retaining castings for use at	D	648	Test for deflection temperature of plastics under load
AST	M A-216	elevated temperatures Standard specification for carbon steel	D	671	Tests for repeated flexural stress of plastics
		castings suitable for fusion welding for high temperature service	D	757	Test for flammability of plastics, self- extinguishing type
AST	M A-234	Standard specification for piping fittings of wrought carbon steel and alloy steel for	D	790	Test for flexural properties of plastics
		moderate and elevated temperatures	D	883	Nomenclature relating to plastics
ANS	l B-16.1	Cast iron pipe flanges and flanged fittings Class 25, 125, 150, 250 and 800	D	1180	Test for bursting strength of round, rigid plastic tubing
ANS	I B-16.42	Ductile iron pipe flanges and flanged fittings Class 150 and 300	D	1598	Test for time to failure of plastic pipe under long-term hydrostatic pressure
ANS	l B-16.5	Steel pipe flanges and flanged fittings Class 150, 300, 400, 600, 900, 1500 and	D	1599	Test for short-time rupture strength of plastic pipe, tubing and fittings
A-58	7	2500 Standard specification for electric-welded	D	2122	Determining dimensions of thermoplastic pipe and fittings
		low carbon steel pipe for the chemical industry	D	2152	Test for quality of extruded PVC pipe by acetone immersion
A-53		Standard specification for pipe, steel black and hot-dipped, zinc-coated, welded and seamless	D	2412	Test for external loading properties of plastic pipe by parallel-plate loading
A-10	-	Standard specification for forgings, carbon steel, for piping components	D	2444	Test for impact resistance of thermoplastic pipe and fittings by means of a tup (falling weight)
A-12	-	Standard specification for steel springs, helical, heat-treated	D	2837	Obtaining hydrostatic design basis thermoplastic pipe materials
A-12	6-73	Standard specification for gray iron castings for valves, flanges, and pipe fittings	D	2924	Test for external pressure resistance of plastic pipe
A-39	5-77	Standard specification for ferritic ductile	REC	OMMEND	ED PRACTICES
	0.77	iron pressure retaining castings for use at elevated temperatures	D	2153	Calculating stress in plastic pipe under internal pressure
A-21	6-77	Standard specification for carbon steel castings suitable for fusion welding for high temperature service	D	2321	Underground installation of flexible thermoplastic sewer pipe
Met	hods of T	est Specifications:	D	2657	Heat joining of thermoplastic pipe and fittings
D	256	Test for impact resistance of plastics and electrical insulating materials	D	2749	Standard definitions of terms relating to plastic pipe fittings
D	543	Test for resistance of plastics to chemical reagents	D	2774	Underground installation of thermoplastic pressure pipe
D	570	Test for water absorption of plastics	D	2855	Making solvent cemented joints with PVC pipe and fittings
D	618	Conditioning plastics and electrical insulating materials for testing	٨٩٢		ARDS FOR PLASTIC MATERIALS
D	621	Tests for deformation of plastics under load	REFI		D IN PLASTIC PIPE, FITTINGS, AND
D	635	Test for flammability of self-supporting plastics	D	1784	PVC compounds and CPVC compounds
D	638	Test for tensile properties of plastics			
(_			

BOCA

Building Officials Conference of America 1313 East 60th Street Chicago, Illinois 60637

BOCA Basic Plumbing Code

Table 2

Group	Commercial Standard or Product Standard	ASTM Standard or Tentative Specification
A	PS10	D2104
В	PS11	D2238
С	PS12	D2447
D	PS18	D1527
E	PS19	D2282
F	PS21	D1785
G	PS22	D2241
Н	CS228	D2852
	CS270	D2661
J	CS272	D2665

COMMERCIAL AND PRODUCT STANDARDS Supt. of Documents

U.S. Government Printing Office Washington, DC 20402

CS 272	PVC-DWV pipe and fittings
PS 21	PVC plastic pipe (Schedules 40, 80, 120) supersedes CS 207-60
PS 22	PVC plastic pipe (SDR) supersedes

CSA

Canadian Standards Association 178 Rexdale Boulevard Rexdale, Ontario, Canada

CS 256

- B 137.0 Defines general requirements and methods of testing for thermoplastic pressure pipe
- B 137.3 Rigid polyvinyl chloride (PVC) pipe for pressure applications
- B 137.4 Thermoplastic piping systems for gas service
- B 137.14 Recommended practice for the installation of thermoplastic piping for gas service
- B 181.2 Polyvinyl chloride drain, waste, and vent pipe and pipe fittings
- B 181.12 Recommended practice for the installation of PVC drain, waste, and vent pipe fittings
- B 182.1 Plastic drain and sewer pipe and pipe fittings for use underground
- B 182.11 Recommended practice for the installation of plastic drain and sewer pipe and pipe fittings

DEPARTMENT OF AGRICULTURE

U.S. Department of Agriculture Soil Conservation Service Washington, DC 20250

SCS National Engineering Handbook, Section 2, Part 1, Engineering Practice Standards

- SCS432-D High pressure underground plastic irrigation pipelines
- SCS432-E Low head underground plastic irrigation pipelines

DEPARTMENT OF DEFENSE MILITARY STANDARDS Commanding Officer

Naval Publications and Forms Center 5108 Tabor Avenue

Philadelphia, Pennsylvania 19120

MIL-A-22010A(1) Adhesive solvent-type, polyvinyl chloride amendment MIL-C-23571A(YD) Conduit and conduit fittings, plastic, rigid MIL-P-14529B Pipe, extruded, thermoplastic MIL-P-19119B(1) Pipe, plastic, rigid, unplasticized, high impact, polyvinyl chloride MIL-P-22011A Pipe fittings, plastic, rigid, high impact, polyvinyl chloride, (PVC) and poly 1, 2 dichlorethylene MIL-P-28584A Pipe and pipe fittings, glass fiber reinforced plastic for condensate return lines MIL-P-29206 Pipe and pipe fittings glass fiber reinforced plastic for liquid petroleum lines

DOT - OTS

Department of Transportation, Hazardous Materials Regulation Board, Office of Pipeline Safety, Title 49, Docket OPS-3 and amendments, Part 192. Transportation of Natural Gas and Other Gas by Pipeline: Minimum Federal Safety Standards, Federal Register, Vol, 35, No. 161, Wednesday, August 19, 1980. Amendments to date are 192-1, Vol. 35, No. 205, Wednesday, October 21, 1970; 19-2, Vol.35, No. 220, Wednesday, November 11, 1970; and 192-3, Vol. 35, No. 223, Tuesday, November 17, 1970.

FEDERAL SPECIFICATIONS

Specifications Activity Printed Materials Supply Division Building 197, Naval Weapons Plant Washington, DC 20407

L-P-320a	Pipe and fittings, plastic (PVC, drain, waste, and vent)
L-P-1036(1)	Plastic rod, solid, plastic tubes and tubing, heavy walled; polyvinyl chloride

FHA

Architectural Standards Division Federal Housing Administration Washington, DC 20412

J., 1	-
FHA UM-41	PVC plastic pipe and fittings for domestic water service
FHA UM-49	ABS and PVC plastic drainage and vent pipe and fittings, FHA 4550.49
FHA UM-53a	Polyvinyl chloride plastic drainage, waste and vent pipe and fittings
FHA MR-562	Rigid chlorinated polyvinyl chloride (CPVC) hi/temp water pipe and fittings
FHA MR-563	PVC plastic drainage and vent pipe and fittings

FHA Minimum Property standards interim revision No. 31

IAPMO

International Association of Plumbing and Mechanical Officials 5032 Alhambra Avenue Los Angeles, California 90032

Uniform Plumbing Code

IAPMO IS8	Solvent cemented PVC pipe for water service and yard piping
IAPMO IS9	PVC drain, waste, and vent pipe and fit- tings
IAPMO IS10	Polyvinyl chloride (PVC) natural gas yard piping
IAPMO PS27	Supplemental standard to ASTM D2665;

polyvinyl chloride (PVC) plastic drain, waste, and vent pipe and fittings

(NOTE: IS = installation standard; PS = property standard)

NSF

National Sanitation Foundation School of Public Health University of Michigan Ann Arbor, Michigan 48106

NSF

Standard No. 14: Thermoplastic Materials, Pipe, Fittings, Valves, Traps, and Joining Materials

NSF

Seal of Approval: Listing of Plastic Materials, Pipe, Fittings, and Appurtenances for Potable Water and Waste Water (NSF Testing Laboratory).

NSPI

National Swimming Pool Institute 2000 K Street, N.W. Washington, DC 20006

T.R.-19 The Role of Corrosion-Resistant Materials in Swimming Pools, Part D, The Role of Plastics in Swimming Pools.

РНСС

National Association of Plumbing-Heating-Cooling Contractors 1016 20th Street, N.W. Washington, DC 20036 National Standard Plumbing Code

SBCC

Southern Building Code Congress 1166 Brown-Marx Building Birmingham, Alabama 35203 SBCC Southern Standard Plumbing Code

SIA

Sprinkler Irrigation Association 1028 Connecticut Avenue, N.W. Washington, DC 20036 Minimum Standards for Irrigation Equipment

WUC

Western Underground Committee, W.H. Foote Los Angeles Department of Water and Power P.O. Box 111 Los Angeles, California 90054 Interim Specification 3.1: Plastic Conduit and Fittings

UL

Underwriters Laboratories, Inc. 207 East Ohio Street Chicago, Illinois 60611

UL 651 Rigid Nonmetallic Conduit (September 1968) UL 514 Outlet Boxes and Fittings (March 1951 with Amendments of 22-228-67)

Table 3 - PIPE O.D.s

U.S. (ANSI)	EUROPE (ISO)					
NOMINAL BORE	ACTUAL OD	DN d (NOMINAL BORE) (ACTUAL		-			
INCHES	INCHES	MM	IN.	MM	IN.		
1/8	.405	6	(.236)	10	(.394)		
1/4	.540	8	(.315)	12	(.472)		
3/8	.675	10	(.394)	15	(.630)		
1/2	.840	15	(.591)	20	(.787)		
3/4	1.050	20	(.787)	25	(.984)		
1	1.315	25	(.984)	32	(1.260)		
1 1/4	1.660	32	(1.260)	40	(1.575)		
1 1/2	1.900	40	(1.575)	50	(1.969)		
2	2.375	50	(1.969)	63	(2.480)		
2 1/2	2.875	65	(2.559)	75	(2.953)		
3	3.500	80	(3.150)	90	(3.543)		
4	4.500	100	(3.937)	110	(4.331)		
5	5.563	125	(4.921)	140	(5.512)		
6	6.625	150	(5.906)	160	(6.299)		
8	8.625	200	(7.874)	225	(8.858)		
10	10.750	250	(9.843)	280	(11.024)		
12	12.750	300	(11.811)	315	(12.402)		

NEMA

National Electrical Manufacturers'Association 2101 "L" St. N.W. Washington, DC 20037

- Type 1 General Purpose Indoor: This enclosure is intended for use indoors, primarily to prevent accidental contact of personnel with the enclosed equipment in areas where unusual service conditions do not exist. In addition, they provide protection against falling dirt.
- Type 2 Dripproof Indoor: Type 2 dripproof enclosures are for use indoors to protect the enclosed equipment against falling noncorrosive liquids and dirt. These enclosures are suitable for applications where condensation may be severe such as encountered in cooling rooms and laundries.
- Type 3 Dusttight, Raintight, Sleet (Ice) Resistant Outdoor: Type 3 enclosures are intended for use outdoors to protect the enclosed equipment against windblown dust and water. They are not sleet (ice) proof.
- Type 3R Rainproof and Sleet (Ice) Resistant Outdoor: Type 3R enclosures are intended for use outdoors to protect the enclosed equipment against rain and meet the requirements of Underwriters Laboratories Inc., Publication No. UL 508, applying to "Rainproof Enclosures." They are not dust, snow, or sleet (ice) proof.
- Type 3S Dusttight, Raintight, and Sleet (Ice) Proof-Outdoor: Type 3S enclosures are intended for use outdoors to protect the enclosed equipment against windblown dust and water and to provide for its operation when the enclosure is covered by external ice or sleet. These enclosures do not protect the enclosed equipment against malfunction resulting from internal icing.
- Type 4 Watertight and Dusttight Indoor and Outdoor: This type is for use indoors or outdoors to protect the enclosed equipment against splashing and seepage of water or streams of water from any direction. It is sleet-resistant but not sleet-proof.

- Type 4X Watertight, Dusttight and Corrosion-Resistant -Indoor and Outdoor: This type has same provisions as Type 4 and, in addition, is corrosion-resistant.
- Type 5 Superseded by Type 12 for Control Apparatus.
- Type 6 Submersible, Watertight, Dusttight, and Sleet (Ice) Resistant Indoor and Outdoor: Type 6 enclosures are intended for use indoors and outdoors where occasional submersion is encountered, such as in quarries, mines, and manholes. They are required to protect equipment against a static head of water of 6 feet for 30 minutes and against dust, splashing or external condensation of non-corrosive liquids, falling or hose directed lint and seepage. They are not sleet (ice) proof.
- Type 7 Class I, Group A, B, C, and D-Indoor Hazardous Locations - Air-Break Equipment: Type 7 enclosures are intended for use indoors, in the atmospheres and locations defined as Class 1 and Group A, B, C or D in the National Electrical Code. Enclosures must be designed as specified in Underwriters' Laboratories, Inc. "Industrial Control Equipment for Use in Hazardous locations," UL 698. Class I locations are those in which flammable gases or vapors may be present in explosive or ignitable amounts. The group letters A, B, C, and D designate the content of the hazardous atmosphere under Class 1 as follows:

Group A

Atmospheres containing acetylene.

Group B

Atmospheres containing hydrogen or gases or vapors of equivalent hazards such as manufactured gas.

Group C Atmospheres containing ethyl ether vapors, ethylene, or cyclopropane.

Group D

Atmospheres containing gasoline, hexane, naphtha, benzene, butane, propane, alcohols, acetone, lacquer solvent vapors and natural gas.

- Type 8 Class I, Group A, B, C or D Indoor Hazardous Locations Oil-immersed Equipment: These enclosures are intended for indoor use under the same class and group designations as Type 7, but are also subject to immersion in oil.
- Type 9 Class II. Group E. F and G - Indoor Hazardous Locations - Air-Break Equipment: Type 9 enclosures are intended for use indoors in the atmospheres defined as Class II and Group E, F, or G in the National Electrical Code. These enclosures shall prevent the ingress of explosive amounts of hazardous dust. If gaskets are used, they shall be mechanically attached and of a non-combustible, nondeteriorating, verminproof material. These enclosures shall be designed in accordance with the requirements of Underwriters' Laboratories, Inc. Publication No. UL 698. Class II locations are those in which combustible dust may be present in explosive or ignitable amounts. The group letter E, F, and G designate the content of the hazardous atmosphere as follows:

Group E

Atmosphere containing metal dusts, including aluminum, magnesium, and their commercial alloys.

Group F

Atmospheres containing carbon black, coal, or coke dust.

Group G Atmospheres containing flour, starch, and grain dust.

- Type 10 Bureau of Mines: Enclosures under Type 10 must meet requirements of Schedule 2G (1968) of the Bureau of Mines, U.S. Department of the Interior, for equipment to be used in mines with atmospheres containing methane or natural gas, with or without coal dust.
- Type 11 Corrosion-Resistant and Dripproof-Oil-Immersed - Indoor: Type 11 enclosures are corrosion-resistant and are intended for use indoors to protect the enclosed equipment against dripping, seepage, and external condensation of corrosive liquids. In addition, they protect the enclosed equipment against the corrosive effects of fumes and gases by providing for immersion of the equipment in oil.
- Type 12 Industrial Use Dusttight and Driptight -Indoor: Type 12 enclosures are intended for use indoors to protect the enclosed equipment against fibers, flyings, lint, dust and dirt, and light splashing, seepage, dripping and external condensation of non-corrosive liquids.
- Type 13 Oiltight and Dusttight Indoor: Type 13 enclosures are intended for use indoors primarily to house pilot devices such as limit switches, foot switches, pushbuttons, selector switches, pilot lights, etc., and to protect these devices against lint and dust, seepage, external condensation, and spraying of water, oil or coolant. They have oil-resistant gaskets.

HAZARDOUS (CLASSIFIED) LOCATIONS IN ACCORDANCE WITH FACTORY MUTUAL ENGINEERING CORP.

The National Electrical Code and the Canadian Electrical Code divide hazardous locations into three "classes" according to the nature of the hazard: Class I, Class II, and Class III. The locations in each of these classes are further divided by "divisions" according to the degree of the hazard.

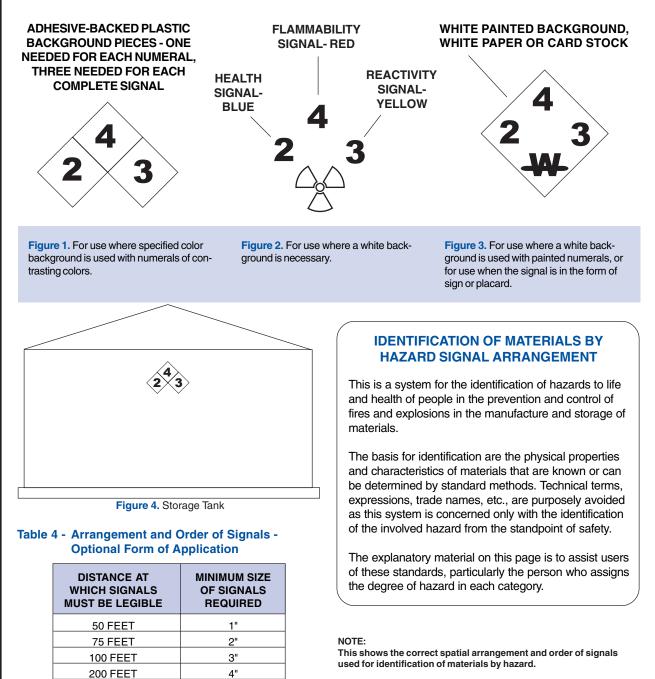
Class I, Division 1 locations are those in which flammable gases or vapors are or may be present in sufficient quantities to produce an ignitable mixture (continuously, intermittently, or periodically).

Class I, Division 2 locations are those in which hazardous mixtures may frequently exist due to leakage or maintenance repair.

Class I, Division 3 are those in which the breakdown of equipment may release concentration of flammable gases or vapors which could cause simultaneous failure of electrical equipment. For purposes of testing, classification and approval of electrical equipment atmospheric mixtures are classified in seven groups (A through G) depending on the kind of material involved.

Class II locations are classified as hazardous because of the presence of combustible dusts.

Class III locations are hazardous because of the presence of combustible fibers or flyings in textile processes.


There are similar divisions and groups for Class II and Class III as those described for Class I. For specifics or further details contact your Corr Tech representative.

HAZARDOUS MATERIAL SIGNALS

Hazardous Material Signals based on the National Fire Protection Association Code number 704M and Federal Standard 313. This system provides for identification of hazards to employees and to outside emergency personnel. The numerical and symboled system shown here are the standards used for the purpose of safeguarding the lives of those who are concerned with fires occurring in an industrial plant or storage location where the fire hazards of material may not be readily apparent.

Table 4 - ARRANGEMENT AND ORDER OF SIGNALS - OPTIONAL FORM OF APPLICATION

6"

300 FEET

IDENTIFICATION OF HEALTH HAZARDS COLOR CODE: BLUE				Y IDENTIFICATION OF REACTIVITY COLOR CODE: YELLOW		
SIGNAL	IAL TYPE OF POSSIBLE INJURY		SUSCEPTIBILITY OF MATERIALS TO BURNING	SIGNAL	SUSCEPTIBILITY TO RELEASE OF ENERGY	
4	Materials which on very short exposure could cause death or major residual injury even though prompt medical treatment were given.	4	Materials which will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature, or which are readily dispersed in air and which will burn readily.	4	Materials which in themselves are readily capable of detonation or of explosive decomposition or reaction at normal temperatures and pressures.	
3	Materials which on short exposure could cause serious, temporary or residual injury even though prompt medical treatment were given.	3	Liquids and solids that can be ignited under almost all ambient temperature conditions.	3	Materials which in themselves are capable of detonation or of explosive reaction but require a strong initiating source or which must be heated under confinemen before initiation or which react explosively with water.	
2	Material which on intense or continued exposure could cause temporary incapacitation or possible residual injury unless prompt medical treatment is given.	2	Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur.	2	Materials which in themselves are normally unstable and readily undergo violent chemical change but do not detonate. Also materials which may react violently with water or which may form potentially explosive mixtures with water.	
1	Materials which on exposure would cause irritation but only minor residual injury, even if no treatment is given.	1	Materials that must be preheated before ignition can occur.	1	Materials which, in themselves, are normally stable, but which can become unstable at elevated temperatures and pressures or which may react with water with some release of energy but not violently.	
0	Materials which on exposure under fire conditions would offer no hazard beyond that of ordinary combustible material.	0	Materials that will not burn.	0	Materials, which in themselves are normally stable, even under fire exposure conditions, and which are not reactive with water.	
	HEALTH HAZARD 4 - DEADLY 3 - EXTREME DANGER 2 - HAZARDOUS 1 - SLIGHTLY HAZARDO 0 - NORMAL MATERIAL	DUS	FLA 4 - E 3 - E 2 - E 1 - A	E HAZAR SH POIN BELOW 7 BELOW 1 BELOW 2 ABOVE 20 WILL NOT	ITS '3°F 00°F 00°F 00°F	
	SPECIFIC HAZARD Oxidizer OXY Acid ACID Alkali ALK Corrosive COR Use NO WATER ₩ Radiation Hazard ※		4 3 2 ₩	3 - SH 2 - VIC	Y DETONATE OCK AND HEAT MAY DETONATE DLENT CHEMICAL CHANGE STABLE IF HEATED	

RELATIVE PROPERTIES

TABLE 1

Table 1

MATERIAL	SPECIFIC GRANTY ASTM-0792	WATER ABSORPTION %/24 hrs at 73*F ASTM - D570	TENSILE STRENGTH psi at 73°F ASTM - 0638	MODULUS OF ELASTICITY IN TENSION psi @ 73-F x 10 ASTM - D638 "E"	FLEXURAL STRENGTH pid ASTM - D790	IZOD IMPACT 78* ft. Ibs/In. notched ASTM - D256	COMPRESSIVE STRENGTH psi ASTM - D695 "o"	POISSON'S RATIO "V"
STEEL Gr. B	7.86		60,000	290		32		.33
ALUMINUM 3003	2.73		16,000	100		20		.33
COPPER	8.94		30,000	170		43		
(PVC) POLYVINYL CHLORIDE TYPE 1	1.38	.05	7,940	4.2	14,500	.65	9,600	.3538
(CPVC) CHLORINATED POLYVINYL CHLORIDE	1.55	.05	8,400	4.2	15,800	3.0	9,000- 22,000	.3538
(PP) POLYPROPYLENE NON PPFR (PPFR) POLYPROPYLENE FLAME RETARDANT	.905	.02	5,000	1.7-2.5	7,000	1.3	5,500- 8,000	.3840
(PROLINE) POLYPROPYLENE/ POLYBUTYLENE COPOLYMER	.905	.02	5,800	1.1	2,900	4.7	7,000	.34-4.0
(RYTON) POLYPHYLENE SULFIDE 40% GLASS FIBER REINFORCED	1.6	.05	19,500	1.6	29,000	1.4	21,000	
(PVDF) POLYVINYLIDENE FLUORIDE	1.75- 1.78	.04	5,000 - 7,000	2.13	12,180	2.8	10,500	.38
POLYETHYLENE LD PE - LOW DENSITY	.925	.01	2,300	.1438	_	9.0		_
HALAR	1.69	.04	4,500	2.40		No Break		0.3-0.4
DURAPLUS (ABS)	1.06		5,500	2.40		8.5	6,150	
HD PE - HIGH DENSITY	.965	.01	4,500	.6-1.8	7.000	4.0	3,600	-
XL PE - CROSS LINK PE	1.28	.02	3,000		5,000	2.0	4,000	_
(PTFE) POLYTETRAFLUORETHYLENE	2.14	.02	2,600	1.0	81,000	No Break	3,500	-
(PFA) POLYFLUOROALKOXY	2.2	0.0	2,000- 5,000	.58	-	3.0	1,700	-
(FEP) FLUORINATED ETHYLENE PROPYLENE	2.1	0.0	2,700- 3,100	.50	—	No Break	2,200	—
EPOXY FIBERGLASS	1.6	.0520	10,000	1.35	10,000	1.0	25,000	
VINYLESTER FIBERGLASS	1.6	.02	10,500	1.4	15,600	2.5	18,000	_
POLYSULFONE	1.24	0.3	10,200	3.6	15,400	1.3		

RELATIVE PROPERTIES

TABLE 2

Table 2

MATERIAL	WORKING STRESS @ 73° FM, psi "S"	COEFFICIENT OF LINEAR EXPANSION In/(in *F) x 10 ⁶ ASTM - D696 "e"	THERMAL EXPANSION inches per 10-F change per 100' of pipe	RESISTANCE TO HEAT *F Continous	HEAT DISTORTION 05 pai ASTM - D648	HEAT DISTORTION TEMP *F at 264 psi ASTM - D648	THERMAL CONDUCTIVITY BTUIhrisq. fV°F/in. ASTM - C177 "K"	BURNING RATE ASTM - D635	LIMITED OXYGEN index (%) ASTM - D2863-70	BURNING CLASS UL 94	SURFACE BURNING OF	BLDG. MATERIALS E-84
STEEL Gr. B	20,000	.06	1/16*	750*	-	_	290		-	-	٨E	Ä
ALUMINUM 3003			5/32"	400°		_	1450				FLAME	SMOKE
COPPER			1/8*	400°			2610				Е	S
(PVC) POLYVINYL CHLORIDE TYPE 1	2,000	3.0	1/3*	140°	173	160	1.2	*	43	V-0	15	850
(CPVC) CHLORINATED POLYVINYL CHLORIDE	2,000	3.8	1/2*	210°	238	221	.95	*	60	V-0	10	295
(PP) POLYPROPYLENE NON PPFR	725-800	5.0	5/8*	180°	220	125-140	1.2		17	V-2	119	791
(PPFR) POLYPROPYLENE FLAME RETARDANT	125-000	5.0	30	100	225	120-140	1.4	Slow		v-2	115	412
(PROLINE) POLYPROPYLENE/ POLYBUTYLENE COPOLYMER	800	8.33	1"	200°		-	1.2	Słow		V-2	110	515
(RYTON) POLYPHYLENE SULFIDE 40% GLASS FIBER REINFORCED	-		1/2*	200°		485	1.5 -0.91	×		V-0		
(PVDF) POLYVINYLIDENE FLU- ORIDE	2,300	6.6-8.7	1"	280°	284	195	1.32	×	44	V-0	_	_
POLYETHYLENE LD PE - LOW DENSITY		10.0- 22.0	1-1/4*	140°	100-121	90-105	2.3	Very Slow	_	V-1	-	—
HD PE - HIGH DENSITY		7.2	7/8*	160°	175-196	110-130	3.5	VerySlow	226	V-1		
XL PE - CROSS LINK PE				180°	180	120		Slow		V-1		
(PTFE) POLYTETRAFLUORETHYLENE		10.0	2/3*	500°	250	—	6.0	٠	95	V-0		
(PFA) PERFLUOROALKOXY		7.6	0.9*	500°			1.3	*	95	V-0		
(FEP) FLUORINATED ETHYLENE PROPYLENE	-	8.3-10.5	1/3"	300°	158	-	6.0	*	95	V-0	_	—
EPOXY FIBERGLASS		4.0-10.0	1/10*	300°		300	1.7			V-0		
VINYLESTER FIBERGLASS			1/10*	200°		200	2.0	*		V-0	_	—
POLYSULFONE		3.1		300°		345	1.8		33	V-0	_	
HALAR	_	4.4-9.2	1"	300°	195	151	1.07	*	60	V-O		
DURAPLUS (ABS)		5.6	5/8*	176°	194	223	1.7	÷				\square

* Self-Extinguishing

INTRODUCTION

In the engineering of thermoplastic piping systems, it is necessary to have not only a working knowledge of piping design but also an awareness of a number of the unique properties of thermoplastics.

In addition to chemical resistance, important factors to be considered in designing piping systems employing thermoplastics are:

- 1. Pressure ratings.
- 2. Water hammer.
- 3. Temperature-Pressure relationships.
- 4. Friction-loss characteristics.
- 5. Dimensional and Weight data.

These factors are considered in detail in this section.

PRESSURE RATINGS OF THERMOPLASTICS

DETERMINING PRESSURE-STRESS-PIPE RELATIONSHIPS

ISO EQUATION

Circumferential stress is the largest stress present in any pressurized piping system. It is this factor that determines the pressure that a section of pipe can withstand. The relation-ship of stress, pressure and pipe dimensions is described by the ISO (for International Standardization Organization) Equation. In various forms this equation is:

$$P = \frac{2S}{R-1} = \frac{2St}{D_0 - t} \qquad \frac{2S}{P} = \left(\frac{D_0}{t}\right) - 1$$
$$\frac{2S}{P} = R - 1 \qquad S = \frac{P(R-1)}{2}$$

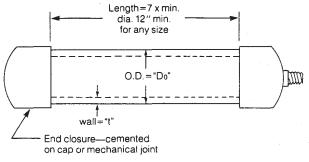
Where:

- P = Internal Pressure, psi
- S = Circumferential Stress, psi
- t = Wall thickness, in.
- $D_0 = Outside Pipe diameter, in.$ $R = D_0/t$

LONG-TERM STRENGTH

To determine the long-term strength of thermoplastic pipe, lengths of pipe are capped at both ends (see Figure 1) and subjected to various internal pressures, to produce circumferential stresses that will produce failure in from 10 to 10,000 hours. The test is run according to ASTMD 1598 — Standard Test for Time-to-Failure of Plastic Pipe Under Long-Term Hydrostatic Pressure.

The resulting failure points are used in a statistical analysis (outlined in ASTM D-2837; see page 6 to determine the characteristic regression curve that represents the stress/time-to-failure relationship for the particular thermoplastic pipe compound under test. This curve is represented by the equation: $Log = a + b \log S$


Where:

a and b are constants describing the slope and intercept of the curve, and T and S are time-to-failure and stress, respectively.

The regression curve may be plotted on a log-log paper, as shown in Figure 2, and extrapolated from 10,000 to 100,000 hours (11.4 years). The stress at 100,000 hours is known as the Long Term Hydrostatic Strength (LTHS) for that particular thermoplastic compound. From this (LTHS) the Hydrostatic Design Stress (HDS) is determined by applying the service factor multiplier, as described below.

FIGURE 1


LONG-TERM STRENGTH TEST PER ASTM D1 598

Pipe test specimen per ASTM D 1598 for "Time-to-Failure of Plastic Pipe Under Long-Term Hydrostatic Pressure"

FIGURE 2

REGRESSION CURVE—STRESS/TIME-TO-FAILURE FOR PVC TYPE I

SERVICE FACTOR

The Plastics Pipe Institute (PPI) has determined that a service (design) factor of one-half the Hydrostatic Design Basis would provide an adequate safety margin for use with water to ensure useful plastic-pipe service for a long period of time. While not stated in the standards, it is generally understood within the industry that this "long period of time" is minimum of 50 years.

Accordingly, the standards for plastic pipe, using the 0.5 service factor, required that the pressure rating of the pipe be based upon this Hydrostatic Design Stress, again calculated with the ISO equation.

While early experience indicated that this service factor, or multiplier, of 0.5 provided adequate safety for many if not most uses, some experts felt that a more conservative service factor of 0.4 would better compensate for water hammer pressure surges, as well as for slight manufacturing variations and damage suffered during installation.

The PPI has issued a policy statement officially recommending this 0.4 service factor. This is equivalent to recommending that the pressure rating of the pipe should equal 1.25 times the system design pressure for any particular installation. Based upon this policy, many thousands of miles of thermoplastic pipe have been installed in the United States without failure.

It is best to consider the actual surge conditions, as outlined later in this section. In addition, substantial reductions in working pressure are advisable when handling aggressive chemical solutions and in high-temperature service.

Numerical relationships for service factors and design stresses of PVC are shown in Table I-A below.

SERVICE FACTORS AND HYDROSTATIC DESIGN STRESS (HDS)*

SERVICE FACTOR	HDS
0.5	2000 psi (13.8 MPa)
0.4	1600 psi (11 MPa)

*Material: PVC Type 1 & CPVC

TEMPERATURE-PRESSURE AND MODULUS RELATIONSHIPS

Temperature Derating.

Pressure ratings for thermoplastic pipe are generally deter-mined in a water medium at room temperature (73°F). As the system temperature increases, the thermoplastic pipe becomes more ductile, increases in impact strength and decreases in tensile strength. The pressure ratings of thermoplastic pipe must therefore be decreased accordingly.

The effects of temperature have been exhaustively studied and correction (derating) factors developed for each thermoplastic piping compound. To determine the maximum operating pressure at any given temperature, multiply the pressure rating at ambient shown in Table 1 by the temperature correction factor for that material shown in Table 2. Attention must also be given to the pressure rating of the joining technique i.e. Threaded system normally reduces pressure capabilities, substantially.

TABLE 1

MAXIMUM OPERATING PRESSURES (PSI) AT 73°F AMBIENT BASED UPON A SERVICE FACTOR OF .5

		PVC	& CPVC	POLYPROPY	LENE	*(PP)	POL	YVINYLIDEN	E FLUORIDE	(PVDF)
	PVC & CPVC	SCHE	DULE 80	PROLINE		SUPER	SUPER PROLINE		SCHEDULE 80	
NOMINAL	SCHEDULE 40	SOLVENT	TUDEADED	0000 054	_			DR	SOCKET	THREADED
SIZE	SOLVENT WELD	WELD	THREADED	PPRO-SEAL	11	32	11	32	FUSION	
1/4	780	1130		N/A	N/A	N/A	N/A	N/A	N/A	N/A
3/8	620	920	-	N/A	NA	N/A	N/A	N/A	N/A	N/A
1/2	600	850	420	150	160	45	230	NA	975	290
3/4	480	690	340	150	160	45	230	N/A	790	235
1	450	630	320	150	160	45	230	N/A	725	215
1-1/4	370	520	260	N/A	160	45	230	N/A	600	180
1-1/2	330	471	240	150	160	45	230	N/A	540	160
2	280	400	200	150	160	45	230	N/A	465	135
2-1/2	300	425	210**	N/A	160	45	N/A	160	N/A	N/R
3	260	375	190**	N/A	160	45	N/A	160	430	N/R
4	220	324	160**	N/A	160	45	N/A	160	370	N/R
6	180	280	N/R	N/A	160	45	N/A	160	N/A	N/R
8	160	250	N/R	N/A	160	45	N/A	160	N/A	N/A
10	140	230	N/R	N/A	160	45	N/A	160	N/A	N/A
12	130	230	N/R	N/A	160	45	N/A	160	N/A	N/A

--- = Data not available at printing; N/R = Not Recommended; N/A = Not Available (not manufactured)

* Threaded Polypropylene is not recommended for pressure applications and Fuseal drainage systems are not pressure rated.

**For threaded joints properly backweided.

NOTE: The pressure ratings in this chart are based on water and are for pipe and fittings only. Systems that include valves, flanges, or other weaker items will require derating the entire system.

Table 2

TEMPERATURE CORRECTION FACTORS

	FACTORS					
			POLYPRO	PYLENE	POLYVINYLIDE	NE FLUORIDE
OPERATING TEMPERATURES °F	PVC	CPVC	PPRO-SEAL NATURAL	PROLINE	SUPER PROLINE	SCHEDULE 80
73	1.00	1.00	1.00	1.00	1.00	1.00
80	.88	.94	.93		.95	.93
90	.75	.86	.83		.87	.87
100	.62	.78	.74	.64	.80	.82
110	.50	.71	.66			.76
120	.40	.64	.58		.68	.71
130	.30	.57	.51			.65
140	.22	.50	.40	.40	.58	.61
150	N/R	.43	.38			.57
160	N/R	.37	.35		.49	.54
180	N/R	.25	.23	.28	.42	.47
200	N/R	.18	.14	.10	.36	.41
210	N/R	.16	.10	N/R		.38
220	N/R	N/R	N/R	N/R		.35
240	N/R	N/R	N/R	N/R	.25	
250	N/R	N/R	N/R	N/R		.28
280	N/R	N/R	N/R	N/R	.18	.22

FLANGED SYSTEMS

Table 3 - MAXIMUM OPERATIN

FLANGED SYSTEMS

Maximum pressure for any flanged system is 150 psi. At elevated temperatures the pressure capability of a flanged system must be derated as shown in Table 12.

Design Pressure - Pressure rating at 73°F x temperature correction factor.

Table 3 - MAXIMUM OPERATING PRESSURE (PSI) FOR FLANGED SYSTEMS

OPERATING TEMPERATURE °F	PVC*	CPVC*	PP**	PVDF
100	150	150	150	150
110	135	145	140	150
120	110	135	130	150
130	75	125	118	150
140	50	110	105	150
150	N/R	100	93	140
160	N/R	90	80	133
170	N/R	80	70	125
180	N/R	70	50	115
190	N/R	60	N/R	106
200	N/R	50	N/R	97
210	N/R	40	N/R	90
240	N/R	N/R	N/R	60
280	N/R	N/R	N/R	25

N/R = Not Recommended

* PVC and CPVC flanges sizes 2-1/2 through 3-/and 4-inch threaded must be backwelded for the above pressure capability to be applicable.

** Threaded PP flanges size 1/2 through 4 inch as well as the 6" back welded socket flange are not recommended for pressure applications (drainage only).

PRESSURE RATINGS PVC LARGE DIAMETER FABRICATED FITTINGS AT 73°F 10" THROUGH 24"

The following tables indicate the working pressure recommended by the manufacturer for large diameter PVC fabricated fittings. These fittings are not generally recommended for high pressure applications. Pressure capabilities are not necessarily the same as the rating of the pipe from which they are fabricated. Be sure pressure to temperature correction factors are considered when system design calls for temperatures above 73°F.

Water hammer and surge pressure are the two most critical elements in large-diameter design. Keeping velocities below 5 feet per second and working pressures to these guidelines will give years of trouble-free service.

Table 4 90° ELBOW

30 EEDOW					
NOMINAL	SCHED	ULE 40	SCHEDULE 80		
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG	
10	22	140	34	230	
12	30	130	50	230	
14	40	130	70	220	
16	56	130	100	220	
18	90	100	93	125	
20	121	50	125	75	
24	202	50	208	75	

Table 7 45° ELBOW

40 222011					
NOMINAL	SCHED	ULE 40	SCHEDULE 80		
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG	
10	15	140	24	230	
12	21	130	36	230	
14	30	130	52	220	
16	42	130	75	220	
18	47	100	71	160	
20	62	50	95	75	
24	103	50	159	75	

Table 5

COUPLING

NOMINAL	SCHED	ULE 40	SCHEDULE 80		
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG	
10	9	140	15	230	
12	15	130	23	230	
14	19	130	33	220	
16	29	130	54	220	
18	33	100	53	160	
20	45	50	74	75	
24	77	50	110	75	

Table 6

TEE

NOMINAL	SCHED	ULE 40	SCHE	DULE 80
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
10	28	140	44	230
12	41	130	69	230
14	54	130	95	220
16	78	130	139	220
18	115	100	156	160
20	153	50	204	75
24	231	50	338	75

Table 8

REDUCING TEE SCHEDULE 40 SCHEDULE 80 NOMINAL SIZE WT. WT. PSI PSI (IN.) (LBS.) RTG (LBS.) RTG 10 x 8 10 x 6 10 x 4 12 x 10 12 x 8 12 x 6 12 x 4 14 x 12 14 x 10 14 x 8 16 x 14 16 x 12 16 x 10 16 x 8 18 x 16 18 x 14 20 x 18 20 x 16 24 x 20

PRESSURE RATINGS

PVC LARGE DIAMETER FABRICATED FITTINGS AT 73°F 10" THROUGH 24"

Table 9

CONCENTRIC REDUCER

NOMINAL	SCHED	ULE 40		
SIZE (IN.)	WT. (LBS.)	PSI RTG		
10 x 8	9	140		
10 x 6	22	140		
10 x 4	23	140		
12 x 10	15	130		
12 x 8	31	130		
12 x 6	34	130		
14 x1 2	23	130		
14 x 10	36	130		
16 x 14	32	130		
16 x 12	54	130		
18 x 16	46	100		
20 x 18	45	100		
24 x 20	87	100		

Table 11

EXTENDED BUSHING

NOMINAL	SCHEDULE 40			
SIZE (IN.)	WT. (LBS.)	PSI RTG		
10 x 8	11	140		
12 x 10	19	130		
14 x 12	28	130		
16 x 14	38	130		

Table 12

MALE ADAPTOR

NOMINAL	SCHEDULE 40				
SIZE (IN.)	WT. (LBS.)	PSI RTG			
6	6	25			
8	7	25			
10	8	25			
12	14	25			

Table 10

BUSHING (SPIC	G x SOC)	
NOMINAL	SCHEDU	ILE 40
SIZE (IN.)	WT. (LBS.)	PSI RTG
10 x 8	11	140
10 x 6	16	140
10 x 4	20	140
12 x 10	15	130
12 x 8	26	130
12 x 6	31	130
14 x 12	24	100
16 x 14	22	100
16 x 12	46	100
16 x 10	61	100
16 x 8	72	100
18 x 16	30	100
20 x 18	33	100
24 x 20	55	100

Table 13

FEMALE ADAPTOR

NOMINAL	SCHEDU	JLE 40
SIZE (IN.)	WT. (LBS.)	PSI RTG
6	6	25
8	7	25
10	8	25
12	14	25

PRESSURE RATINGS PVC LARGE DIAMETER FABRICATED FITTINGS AT 73°F

Table 14

CROSS

NOMINAL	SCHED	ULE 40	SCHED	DULE 80
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
3	2	240	5	260
4	3	220	7	240
6	13	160	22	240
8	22	160	30	240
10	38	140	62	230
12	58	130	95	230
14	74	130	129	220
16	107	130	190	220
18	117	100	185	160
20	158	50	247	75
24	267	50	413	75

Table 15

FLANGE (BLIND)

NOMINAL	SCHED	ULE 40	SCHED	ULE 80
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
10	16	25	32	75
12	21	25	42	75
14	26	25	52	75
16	33	25	66	75
18	36	25	72	75
20	44	25	88	75
24	57	25	114	75

Table 16

CAP

NOMINAL	SCHED	ULE 40	SCHED	ULE 80
SIZE (IN.)	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
10	5	140	14	230
12	7	130	17	230
14	23	130	35	220
16	32	130	49	220
18	38	100	54	160
20	49	50	69	75
24	74	50	108	75

Table 17

IPS PIPE DIMENSION TABLE

NOMINAL		SCHE	DULE 40	SCHEDU	LE 80
PIPE SIZE (IN.)	0.D.	AVERAGE I.D.	MINIMUM WALL	AVERAGE I.D.	MINIMUM WALL
1	1.315	1.033	.133	.935	.179
1-1/4	1.660	1.364	.140	1.256	.191
1-1/2	1.900	1.592	.145	1.476	.200
2	2.375	2.049	.154	1.913	.218
3	3.500	3.042	.216	2.864	.300
4	4.500	3.996	.237	3.786	.337
5	5.563	5.047	.258	4.813	.375
6	6.625	6.013	.280	5.709	.432
8	8.625	7.943	.322	7.565	.500
10	10.750	9.976	.365	9.492	.593
12	12.750	11.890	.406	11.294	.687
14	14.000	13.126	.437	12.440	.780
16	16.000	15.000	.500	14.200	.900
	CLA	SS 100		CLAS	S 160
18	18.000	17.120	.440	16.614	.693
20	20.000	19.022	.489	18.460	.770
24	24.000	22.870	.585	22.152	.924

Table 18

MODULUS OF ELASTICITY (x10-) PSI VS. TEMPERATURE

				TEMP	ERATURE, °F				
MATERIAL	73	90	110	140	170	200	210	250	280
PVC	4.20	3.85	3.40	3.00					
CPVC	4.23	4.10	3.70	3.27	2.93	2.40	2.26		
PP Fuseal	2.00	1.30	.097	.074	0.61	0.55	0.53		
PP Pressure	1.50	1.34	1.18	0.96	0.77	0.59	0.53		_
PVDF	2.13	1.66	1.37	1.04	0.80	0.61	0.55	0.37	0.29

EXTERNAL PRESSURES - COLLAPSE RATING

Thermoplastic pipe is frequently specified for situations where uniform external pressures are applied to the pipe, such as in underwater applications. In these applications, the collapse rating of the pipe determines the maximum permissible pressure differential between external and internal pressures. The basic formulas for collapsing external pressure applied uniformly to a long pipe are:

1. For thick wall pipe where collapse is caused by compression and failure of the pipe material:

$$Pc = o \quad (Do^2 - Di^2)$$

2. For thin wall pipe where collapse is caused by elastic instability of the pipe wall:

$$\frac{\text{Pc} = 2\text{cE}}{1-v^2} \left(\frac{\text{t}}{\text{Dm}}\right)^3$$

Pc = Collapse Pressure (external minus internal pressure), psi

o = Compressive Strength, psi

E = Modulus of elasticity, psi

v = Poisson's Ratio

Where:

Do = Outside Pipe Diameter, in.

Dm = Mean Pipe Diameter, in.

Di = Inside Pipe Diameter, in.

t = Wall Thickness, in.

c = Out-of-Roundness Factor, Approximately 0.66

Choice of Formula - By using formula 2 on thick-wall pipe, an excessively large pressure will be obtained. It is therefore necessary to calculate, for a given pipe size, the collapse pressure using both formulas and use the lower value as a guide to safe working pressure. For short-term loading conditions, the values of E, o and v from the relative properties charts shown on pages 40-41 will yield reasonable results. See individual materials charts for shortterm collapse pressures at 73°F. For long-term loading conditions, appropriate long-term data should be used.

SHORT-TERM COLLAPSE PRESSURE

Thermoplastic pipe is often used for suction lines or in applications where external pressures are applied to the pipe, such as in heat exchangers, or underwater loading conditions. The differential pressure rating of the pipe between the internal and external pressures is determined by derating collapse pressures of the pipe. The differential pressure rating of the pipe is determined by derating the short-term collapse pressures shown in Table 19. Collapse pressures must be adjusted for temperatures other than for room temperature. The pressure temperature correction chart (Table 19) used to adjust pipe pressure ratings may be used for this purpose. (See note below table).

Table 19

ιαρι	C 13	·													
SHOR	T-TE	RM (OLL	APS	E PRI	ESSU	RE IN	I PSI /	AT 73	°F					
1/2	3/4	1	1-1/4	1-1/2	2	3	4	6	8	10	12				
SCHE	DUL	E 40	PVC												
2095	1108	900	494	356	211	180	109	54	39	27	22				
SCHE	DULE	E 80 I	PVC												
2772	2772 2403 2258 1389 927 632 521 335 215 147 126 117														
SCHE	DULE	E 80 (CPVC) - IP	s										
2772	CHEDULE 80 CPVC - IPS 2772 2403 2258 1389 927 632 521 335 215 147 126 117 CHEDULE 80 PRESSURE POLYPROPYLENE - IPS														
SCHE	DULE	E 80 I	PRES	SUR	E PO	LYPF	ROPY	LENE	- IPS						
1011	876	823	612	412	278	229	147	94	65	55	51				
SCHE	DULE	E 80 I	PVDF	- IP	s										
2936	1576	1205	680	464	309	255	164	105	72	61	57				
PROL	INE F	PRO	150												
40	40	40	40	40	40	40	40	40	40	40	40				
PROL	INE F	PRO	45												
1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6				
SUPE	R PR	OLIN	IE												
202	99	92	44	41	22	5.8	5.8	5.8	5.8	5.8	5.8				

NOTE: These are short-term ratings; long-term ratings should be reduced by 1/3 to 1/2 of the short-term ratings.

Vacuum Service - All sizes of Schedule 80 thermoplastic pipe are suitable for vacuum service up to 140°F and 30 inches of mercury. Solvent-cemented joints are recommended for vacuum applications when using PVC. Schedule 40 PVC will handle full vacuum up to 24" diameter.

Laboratory tests have been conducted on Schedule 80 PVC pipe to determine performance under vacuum at temperatures above recommended operating conditions. Pipe sizes under 6 inches show no deformation at temperatures to 170°F and 27 inches of mercury vacuum.

The 6 inch pipe showed slight deformation at 165°F, and 20 inches of mercury. Above this temperature, failure occurred due to thread deformation.

WATER HAMMER

Surge pressures due to water hammer are a major factor contributing to pipe failure in liquid transmission systems. A column of moving fluid within a pipeline, owing to its mass and velocity, contains stored energy. Since liquids are essentially incompressible, this energy cannot be absorbed by the fluid when a valve is suddenly closed. The result is a high momentary pressure surge, usually called water hammer. The five factors that determine the severity of water hammer are:

- 1. Velocity (The primary factor in excessive water hammer: see discussion of "Velocity" and "Safety Factor" on page 62).
- 2. Modulus of elasticity of material of which the pipe is made.
- 3. Inside diameter of pipe.
- 4. Wall thickness of pipe.
- 5. Valve closing time.

Maximum pressure surges caused by water hammer can be calculated by using the equation below. This surge pressure should be added to the existing line pressure to arrive at a maximum operating pressure figure. $Ps = V \left(\frac{Et 3960}{Et + 3 \times 10^5 \text{Di}} \right)$ <u>1/2</u>

Where:

- Ps = Surge Pressure. in psi
- V = Liquid Velocity, in ft. per sec.
- Di = Inside Diameter of Pipe, in.
- E = Modulus of Elasticity of Pipe Material, psi
- t = Wall Thickness of Pipe, in.

Calculated surge pressure, which assumes instantaneous valve closure, can be calculated for any material using the values for E (Modulus of Elasticity) found in the properties chart, pages 13-14. Here are the most commonly used surge pressure tables for IPS pipe sizes.

WATER VELOCITY					I	NOMINAL	PIPE SIZE	=				
(FT/SEC)	1/2	3/4	1	1-1/4	1-1/2	2	3	4	6	8	10	12
CHEDULE	40 PVC /	& CPVC										
1	27.9	25.3	24.4	22.2	21.1	19.3	18.9	17.4	15.5	14.6	13.9	13.4
2	55.8	50.6	48.8	44.4	42.2	38.6	37.8	34.8	31.0	29.2	27.8	26.8
3	83.7	75.9	73.2	66.6	63.3	67.9	56.7	52.2	46.5	43.8	41.7	40.2
4	111.8	101.2	97.6	88.8	84.4	77.2	75.8	69.6	62.0	68.4	55.6	63.6
6	139.6	126.5	122.0	111.0	105.6	96.5	94.6	87.0	77.6	73.0	69.6	67.0
6	167.4	151.8	146.4	133.2	126.6	115.8	113.4	104.4	93.0	87.6	83.4	80.4
SCHEDULE	80 PVC /	& CPVC										
1	32.9	29.9	28.7	26.2	25.0	23.2	22.4	20.9	19.4	18.3	17.3	17.6
2	65.6	69.8	67.4	52.4	50.0	46.4	44.8	41.8	38.8	36.6	36.6	36.2
3	98.7	89.7	86.7	78.8	76.0	69.6	67.2	62.7	68.2	59.9	63.4	62.8
4	131.6	119.6	114.8	104.8	107.0	92.8	89.6	83.6	77.6	73.2	71.2	70.4
б	164.5	149.5	143.5	131.0	125.0	116.0	112.0	104.5	97.0	91.6	89.0	88.0
6	197.4	179.4	172.2	157.2	160.0	133.2	134.4	125.4	116.4	109.8	106.8	106.6
CHEDULE	80 POYI	LPROPY	LENE									
1	23.6	20.9	20.0	18.1	17.1	16.9	15.2	14.1	13.1	12.2	11.9	11.8
2	47.0	41.8	40.0	36.2	34.2	31.6	30.4	28.2	26.2	24.4	23,8	23.6
3	70.6	82.7	80.0	64.3	51.3	47.4	45.6	42.3	39.3	36.6	35.7	35.4
4	94.0	83.6	80.0	72.4	68.4	63.2	80.8	58.4	62.4	48.8	47.6	47.2
6	117.6	104.5	100.0	90.5	86.5	79.0	76.0	70.6	65.5	61.0	69.5	59.0
6	141.0	125.4	120.0	108.6	102.6	94.8	91.2	84.6	78.6	73.2	71.4	70.8
SCHEDULE	80 PVDF											
1	26.2	22.6	21.6	19.5	18.5	17.1	16.5	16.3	14.2	13.3	12.9	12.8
2	50.4	45.2	43.2	39.0	37.0	34.2	33.0	30.6	28.9	26.6	25.8	25.6
3	76.6	67.8	64.8	68.5	55.5	51.3	49.5	46.9	42.6	39.9	38.7	38.4
4	100.8	90.4	86.4	78.0	74.0	68.4	66.0	61.2	56.8	53.2	51.6	61.2
б	128.0	118.0	108.0	97.5	92.6	86.5	82.6	76.5	71.0	66.5	64.5	64.0
6	151.2	135.6	129.6	117.0	111.0	102.6	99.0	91.8	86.2	79.8	77.4	76.8
SUPER PRO	LINE											
1	22.3	19.8	19.6	17.4	17.1	15.5	18.4	12.6	12.5	12.4	12.4	12.4
2	44.6	39.7	39.1	34.7	34.2	30.9	24.8	26.2	24.9	24.8	24.9	24.8
3	66.8	69.5	68.7	62.1	61.4	46.4	37.2	37.7	37.A	37.2	37.3	37.3
4	89.1	79.4	78.3	69.5	88.5	61.8	49.7	50.3	49.9	49.6	49.8	49.7
5	111.3	99.2	97.9	86.9	85.6	77.3	62.1	62.9	62.3	62.0	62.2	62.1
6	133.6	119.0	117.4	104.2	102.7	92.8	74.6	76.6	74.8	74.4	74.6	74.6
PROLINE PR	IO 150											
1	15.3	14.1	12.9	12.6	12.8	12.8	12.7	12.7	12.8	12.7	12.7	12.7
2	30.7	28.2	25.9	25.3	26.6	25.6	25.5	26.4	26.5	26.5	25.6	25.5
3	46.0	42.3	38.8	37.9	38.4	38.4	38.2	38.2	38.3	38.2	38.2	38.2
4	61.4	56.4	61.8	60.5	51.2	61.2	61.0	60.9	61.0	60.9	51.0	50.9
6	76.7	70.6	64.7	63.2	64.0	64.0	63.7	63.6	63.8	63.7	63.7	63.7
6	92.1	84.6	77.6	75.8	76.8	76.8	76.5	76.3	76.5	76.4	76.5	76.4
PROLINE PR	IO 45											
1	-	-	-	-	-	7.1	7.0	7.1	7.1	7.0	7.1	7.1
2	-	-	-	-	-	14.2	14.1	14.3	14.2	14.1	14.1	14.1
3	-	-	-	-	-	21.3	21.1	21.4	21.2	21.1	21.2	21.1
4	-	-	-	-	-	28.4	28.1	28.6	28.3	28.2	28.2	28.2
5	-	-	-	-	-	35.5	35.2	35.7	35.4	35.2	35.3	36.3
6	-	-	-	-	-	42.5	42.3	42.8	42.5	42.2	42.4	42.3

NOTE: For sizes larger than 12", call your Corr Tech representative.

WATER HAMMER (continued)

However, to keep water hammer pressures within reasonable limits, it is common practice to design valves for closure times considerably greater than 2L/C.

T_c>2L С = Valve Closure time, sec. Where: Τс Length of Pipe run, ft. L = Sonic Velocity of the Pressure Wave = С =

4720 ft. sec. Another formula which closely predicts water hammer p = a _ w 144g effects is:

Which is based on the elastic wave theory. In this text, we have further simplified the equation to:

p = CvWhere: maximum surge pressure, psi p = fluid velocity in feet per second v = surge wave constant for water at 73°F C =

It should be noted that the surge pressure (water hammer) calculated here is a maximum pressure rise for any fluid velocity, such as would be expected from the instant closing of a valve. It would therefore yield a somewhat conservative figure for use with slow closing actuated valves. etc.

For fluids heavier than water, the following correction should be made to the surge wave constant C.

 $C^1 = (S.G. -1) C + C$

Where: C¹ Corrected Surge Wave Constant = S.G. = Specific Gravity or Liquid

For example, for a liquid with a specific gravity of 1.2 in 2" Schedule 80 PVC pipe, from Table 43 = 24.2

$$C^{1} = (\underline{1.2 - 1}) (24.2) + 24.2$$

$$C^{1} = 2.42 + 24.2$$

$$C^{1} = 26.6$$

Table 21 - Surge Wave Correction for Specific Gravity

PIPE	PVC SCH 40 SCH 80 S 31.3 34.7 29.3 32.7 28.7 31.7 26.3 29.8 25.7 29.2 23.2 27.0 22.0 25.8 20.2 24.2 21.1 24.7 19.5 23.2 17.8 21.8 15.7 20.2 14.8 18.8 18.8 18.8			VC	POLY-	KYNAR
SIZE (IN.)	SCH 40	SCH 80	SCH 40	SCH 80	PROPYLENE SCH 80	(PVDF) SCH 80
1/4	31.3	34.7	33.2	37.3		
3/8	29.3	32.7	31.0	34.7	_	
1/2	28.7	31.7	30.3	33.7	25.9	28.3
3/4	26.3	29.8	27.8	31.6	23.1	25.2
1	25.7	29.2	27.0	30.7	21.7	24.0
1-1/4	23.2	27.0	24.5	28.6	19.8	_
1-1/2	22.0	25.8	23.2	27.3	18.8	20.6
2	20.2	24.2	21.3	25.3	17.3	19.0
2-1/2	21.1	24.7	22.2	26.0	-	
3	19.5	23.2	20.6	24.5	16.6	
4	17.8	21.8	18.8	22.9	15.4	
6	15.7	20.2	16.8	21.3		
8	14.8	18.8	15.8	19.8		
10	14.0	18.3	15.1	19.3		
12	13.7	18.0	14.7	19.2		
14	13.4	17.9	14.4	19.2		

Proper design when laying out a piping system will eliminate the possibility of water hammer damage. The following suggestions will help in avoiding problems:

- 1) In a plastic piping system, a fluid velocity not exceeding 5ft/sec. will minimize water hammer effects, even with quickly closing valves, such as solenoid valves.
- 2) Using actuated valves which have a specific closing time will eliminate the possibility of someone inadvertently slamming a valve open or closed too quickly. With pneumatic and air-spring actuators, it may be necessary to place a valve in the air line to slow down the valve operation cvcle.
- 3) If possible, when starting a pump, partially close the valve in the discharge line to minimize the volume of liguid which is rapidly accelerating through the system. Once the pump is up to speed and the line completely full, the valve may be opened.
- 4) A check valve installed near a pump in the discharge line will keep the line full and help prevent excessive water hammer during pump start-up.

VELOCITY

Thermoplastic piping systems have been installed that have successfully handled water velocities in excess of 10 ft/sec. Thermoplastic pipe is not subject to erosion caused by high velocities and turbulent flow, and in this respect is superior to metal piping systems, particularly where corrosive or chemically aggressive fluids are involved. The Plastics Pipe Institute has issued the following policy statement on water velocity: The maximum safe water velocity in a thermoplastic piping system depends on the specific details of the system and the operating conditions. In general, 5 feet per second is considered to be safe. Higher velocities may be used in cases where the operating characteristics of valves and pumps are known so that sudden changes in flow velocity can be controlled. The total pressure in the system at any time (operating plus surge or water hammer) should not exceed 150 percent of the pressure rating of the system.

SAFETY FACTOR

As the duration of pressure surges due to water hammer is extremely short - seconds, or more likely, fractions of a second - in determining the safety factor the maximum fiber stress due to total internal pressure must be compared to some very short-term strength value. Referring to Figure 2, shown on page15, it will be seen that the failure stress for very short time periods is very high when compared to the hydrostatic design stress. The calculation of safety factor may thus be based very conservatively on the 20-second strength value given in Figure 2, shown on page 15 - 8470 psi for PVC Type 1.

A sample calculation is shown below, based upon the listed criteria:

> Pipe = 1-1/4" Schedule 80 PVC O.D. = 1.660: Wall = 0.191

HDS = 2000 psi

The calculated surge pressure for 1-1/4" Schedule 80 PVC pipe at a velocity of 1 ft/sec is 26.2 psi/ft/sec.

CARRYING CAPACITY & FRICTION LOSS TABLE 22

CARRYING CAPACITY AND FRICTION LOSS FOR SCHEDULE 80 THERMOPLASTIC PIPE (Independent variables: Gallons per minute and nominal pipe size O.D.

Dependent variables: Velocity, friction head and pressure drop per 100 feet of pipe, interior smooth .)

	_	_	_	_		_	_	_	_	_	-	_	_	_	_	_	_	_		_	_	_		_			_	_	-	_		_		_	_	_
FRICTION LOSS POUNDS PER SQUARE INCH	_			0.009	0.012	1000	0.065	0.095	0.13	0.18	0.23	0.29	0.35	0.49	0.65	0.74	0.84	1.04	1.27	200	3.58	4.58	6.93													
FRICTION HEAD FEET	3 IN.			0.02	0.028	000	0.15	0.22	0.31	0.42	0.54	0.67	0.81	1	121	1,72	1.94	2,41	2.93	200	826	10.57	16.00													
VELOCITY FEET PER SECOND	L			0.25	0.35	10.00	1	2	1,49	1.74	1.99	2.24	2.49	2.99	3.49	3.74	3.99	4.48	86,4	144	872	6.6	12.46				_									
FRICTION LOSS POUNDS PER SQUARE INCH	ź			0.022	0.032	110	010	0.29	0.41	0.54	0.69	0.86	1.05	1.47	1.95	2.22	2.50	3.11	3.78	8.00	0.0															
FRICTION HEAD FEET	2-1/2			0.05	0.07	20	140	0.67	0.94	1.25	1.60	1.99	2,42	3.39	451	5.12	272	7.18	2 2	1979																
VELOCITY FEET PER SECOND				0.39	0.54	111	1.56	\$	2.34	2.73	3.12	3.51	3.90	4,68	5.46	5,85	6.24	7,02	7.80	02.10																
FRICTION LOSS POUNDS PER SQUARE INCH	Γ			0.040	0.065	0.27	0.46	0.69	0.97	1.29	1.66	2.07	2.51	3.52	4.68	5.31	5.99	1.85	50.6						0.016	0.026	0.030	0.065	0.11	0.17	0.24	0.41	0.62	0.86	1.15	8
FRICTION HEAD FEET	2 IN.			0.10	0.15	690	1.06	1.60	2.25	2.99	3,83	4.76	5.79	8.12	10.80	12.27	13.63	17.20	20.90				12 IN		0.037	0.06	0.07	0.15	0.26	0.40	0.55	0.94	1.42	1.99	2.65	34
VELOCITY FEET PER SECOND				0.56	0.78	188	2.23	2.79	3.35	3.91	4.47	5.03	5.58	6.70	7.97	8.38	9,93	10.05	11.11						21.12 21.12	44	1.60	2.40	3.20	4.01	4.81	6.41	8.01	19.6	11.21	12,82
FRICTION LOSS POUNDS PER SQUARE INCH			0.041	0.126	0.24	80	1.62	2.46	3.44	4.58	5.87	230	8.87	12.43								0.015	0.02	0.03	750.0	0.061	0.074	0.16	0.26	0.40	0.56	<u>8</u>	144			
FRICTION HEAD FEET	1-1/2 IN		0.10	00.00	0.55	2 20	3.75	5.67	2.85	10.58	13.55	16.85	20.48	28.70							10 N	0.036	0.045	0.07	1100	0.14	0.17	96.0	0.61	0.92	129	2 19	333			
VELOCITY FEET PER SECOND			0.38	0.94	1.32	28	3.75	8	5.63	6.57	7.50	4	9.38	11.26								0:90	11		60 F	2.04	2.27	3.40	454	5.67	6.80	9.07	13			
FRICTION LOSS POUNDS PER SQUARE INCH			0.09	0.29	0.53	2.11	3.59	5.43	7.62	10.13	12.98	16.14	19.61						0.010	0.022	0.033	0.039	0.61	0.087	0.12	0.18	0.22	0.47	0.80	1.20	1.68					
FRICTION HEAD FEET	1-1/4 IN		0.21	0.66	121	4.87	8.30	12.55	17.59	23.40	29.97	37.27	45.30					8 IN	0 045	0.05	0.075	0.09	0.14	0.20	0.34	0.42	0.51	1.06	1,84	2.78	3,89					
VELOCITY FEET PER SECOND	÷		0.52	6	1.82	8	5.20	6.50	7.80	9.10	10.40	11.70	13.00						80	1.07	1.25	1.43	1.79	2.14	98.5	3.21	3.57	5.36	7.14	8.93	10.71					
FRICTION LOSS POUND'S PER SQUARE INCH			86.0	1.19	2.19	8.82	15.02	22.70	31.82				0.013	210.0	770.0	0.026	0.030	0.035	0.068	0.095	0.12	0.16	0.24	9.34	8 8	12.0	0.87	1.84	3.13							1
FRICTION HEAD FEET	1 IN.		0.68	2.75	5.04	20.36	34.68	52.43	73.48		R IN		0.03	0.04	Sin i	0.06	20.0	0.08	2 9	0.22	62.0	0.37	0.56	8/0	12	1.65	2.00	\$	7.23							
VELOCITY FEET PER SECOND			0.94	2.34	3.26	7.01	9.35	11.69					0.63	0.75	8	0.94	8	22	9 2	1.88	2.20	2.51	3.14	8.2	5 8 7 4	564	6.27	9.40	12.54							
FRICTION LOSS POUNDS PER SQUARE INCH		0.37	0.74	4.19	7.69	31.05			0.013	0.017	210/0	0.026	0.030	0.043	0000	190.0	890.0	190.0	2 9	0.23	0.30	0.38	0.58	0.81	9,9	1.72	2.09									
FRICTION HEAD FEET	3/4 IN.	0.86	1,72	9.67	33.84	71.70		5 IN	0.03	0.0	0.04	90'0	10.0	0.10		5.0	0.10	8.0	0.37	0.52	0.69	0.88	1.34	1.87	6 6 7 6	3.97	4.82									
VELOCITY FEET PER SECOND		0.74	1.57	3.92	5,49	11.76			0.54	0.63	0.72	0.81	06.0	8 ×		93	ŧ.,	20.0	2.25	2.70	3.15	3.60	4.50	a	7.19	8.09	8.99									
FRICTION LOSS POUND'S PER SQUARE IN CH		1.74		19.59			0.017	0.026	0.035	0.048	0.061	0.074	0.081	0.13	-	0.19	77.0	200	0.50	0.70	0.93	1.19	191	2.52	4.30											
FRICTION HEAD FEET	1/2 IN.	ļ		45.23		4 IN.	0.04							8.0		0.45					2.15				0.00											
VELOCITY FEET PER SECOND		1.48	2.96	7.39	10.34		0.57	0.72	0.86	100	115	5	145	20.0		2.12		00.7	3.59	4.30	5.02	5.73	7.16	0.00	11.47											
GALLONS PER MINUTE		-	N	1 71	~ <u>p</u>	12	8	8	8	8	\$ 1	ę :	8:	88	2	68	8 8	ŝ	125	150	175	200	290	200	9	450	500	750	001	1250	1500	2000	2500	3000	2000	3

CARRYING CAPACITY & FRICTION LOSS TABLE 23

CARRYING CAPACITY AND FRICTION LOSS FOR SCHEDULE 40 THERMOPLASTIC PIPE (Independent variables: Gallons per minute and nominal pipe size O. D. Dependent variables: Velocity, friction head and pressure drop per 100 feet of pipe, interior smooth .)

		_	_	_		_	_			_	_		_	_	-	_			_				_	-	-	_		_	_			_	_	_	_
FRICTION LOSS POUNDS PER SQUARE INCH				0.007	600.0	0.013	0.048	0.074	0.10	0.13	0.17	0.22	0.26	15.0		0.60	0.78	0.94	1.43	2.00	2.67	3,47	5.17												
FRICTION HEAD FEET	3 IN.			0.015	0.021	0.02	110	0.17	0.23	0.31	0.40	0.50	0.60	0.80	2	1 44	1.80	2.18	3.31	4,63	6.76	7.88	11.93												
VELOCITY FEET PER SECOND				0.22	0.31	980 980	880	1.10	1.33	1.55	1.77	65.1	22	88		5.5	3.98	4	5.52	6.83	7.73	8,83	11.04												
FRICTION LOSS POUNDS PER SQUARE INCH	ž			0.016	0.023	0.039	0.14	0.21	0.29	0.39	0.50	0.62	0.76	5.5	2	191	2.26	2.74	4.05	5.81															
FRICTION HEAD FEET	2-1/2 }			0.038	0.051	800	0.32	0.49	0.68	16:0	1.16	14	1.75	2.46	1.0	3.7	5.21	6.33	9.58	13.41															
VELOCITY FEET PER SECOND				000	0.49	800	15	5	2,05	2.39	2.73	3.08	3.42	0.5		0 10	6.15	6.84	8.55	10.26															
FRICTION LOSS POUNDS PER SQUARE INCH				0.029	0.048	0.10	0.33	0.60	0.70	0.93	119	69.1	1,80	202	00.0	3.85 7 30	5.36	6.51						0.012	0.017	0.022	0.026	0.052	0.087	0.13	0.19	0.32	0.49	0.67	0.90
FRICTION HEAD FEET	2 IN.			0.066	0.11	570	0.76	1.15	1.62	2.15	2.75	143	4.16	99.0		20.0	12.37	15.03					12 IN	0.027	0.04	0.05	0.06	0.12	0.20		0.43		- 1		2.66
VELOCITY FEET PER SECOND				0.49	0.69	800	1.95	2.44	2.93	3.41	3.90	6.4	8	8 8	20.0	7 80	8.78	9.75						101	1.16	1.30	1.45	2.17	2.89	3.62	4.34	5.78	7.23	8.68	11.07
FRICTION LOSS POUNDS PER SQUARE INCH			0.03	0.09	0.17	0.66	1.13	1.71	2,39	3.19	4.08	5.08	1.17 9 9 9 9	00.0	Ī							0.012	0.015	0.028	0.039	0.048	0.056	0.12	0.21	0.32	0.44	0.74	1.13		
FRICTION HEAD FEET	1-1/2 IN		0.07	0.22	0.38	153	2,61	3.95	5,53	7.36	9.43	11.73	14.25	14.90					and the second second	10 IN.		0.027	0.035	0.065	0.09	0.11	0.13	0.28	0.48	0.73	1.0.1	1.72	2.61		
VELOCITY FEET PER SECOND	÷		0.33	0.81	212	200	3.23	4.04	4,85	5.66	6.47	1.27	808	2.2								0.82	8 2	Ŧ	1.64	5	2.05	3.08	4.11	5.14	6,16	8.21	10.27		
FRICTION LOSS POUNDS PER SQUARE INCH			0.06	0.19	0.35	140	2.42	3.66	5.13	6.82	8.74	10.87	13.21		Ι			0.012				0:030	0.048	0.091	0.12	0.14	0.17	0.37	0.63	8	1.33				
FRICTION HEAD FEET	1-1/4 IN		0.14	0.44	0.81	3 28	5.59	8.45	11,85	15.76	20.18	9.92	30.51			8 IN		0.03	0.035	0.04	0.055	0.07	0.11	0.21	0.27	0.33	0.40	0,85	1.45	2.20	3.07				
VELOCITY FEET PER SECOND	÷		0.44	1	1.55	3.31	4.42	5.52	6,63	7.73	8.8	56.5	60°E					0.65	0.81	0.97	1.14	1,30	1.63	2.27	2.59	2.92	3.24	4,86	6.48	÷.	9.72				
FRICTION LOSS POUND'S PER SQUARE IN CH			0.24	0.75	137	5.63	9.42	14.22	19,95			0000	800.0	0.017	0.000	0.022	0.026	0.035	0.052	0.069	0.096	0.12	0.19	0.34	0.44	0.55	0.66	1.41	2.40						
FRICTION HEAD FEET	1 IN.		0.55	1.72	3.17	10.02	21.75	32.56	46,08				0.02	2000	800	500	0.06	0.08	0.12	0.16	0.22	0.28	0.60	0.79	1.01	1.26	221	3,25	5.54						
VELOCITY FEET PER SECOND			0.77	1.93	2.72	5,79	22.7	9.65	11.58				800	0.70	10.00	080	0	1.12	1.41	1,69	1.97	2.25	3.37	3.94	4.49	5.06	5.62	8.43	11.24						
FRICTION LOSS POUNDS PER SQUARE INCH		0.22	0.44	2.48	4.56	18.20	31.32		0.009	0.013	0.013	10.0	0.022	00000	0.040	0.056	0.069	0.082	0.125	0.17	0.235	0.30	0.45	0.85	1.08	1.34	1.63								
FRICTION HEAD FEET	3/4 IN				10.52	· I ·	72.34		0.02	0.0	0.03	0.0	0.0	0.0	2	0.13	0.16	0.19	0.29	0.40	0.54	0.69	146	1.95	2.49	3,09	3.76								
VELOCITY FEET PER SECOND		0.63	1.26	3.16	54.4 2	9.48	12.65		0.49	0.57	0.65	0.73	0.81	114	6	1.38	4	1.62	2.03	2.44	2.84	3.25	4 87	5.69	6.50	7.31	ê.12								
FRICTION LOSS POUNDS PER SQUARE INCH		06.0	1.80	10.45	13.64	10.02	0.013	0.017	0.026	0.035	0.048	0,056	0.069	20070	2 40	0.16	0.20	0.25	0.38	0.53	0.71	0.90	1.38		3.26										
FRICTION HEAD FEET	1/2 IN.	2.06	8L.9	23,44	43.06		0,03	9.04	0.06	80.0	0.11	0.13	0.16	27.0	45.0	0.36	0.47	0.58	0.88	1.22	1.63	2.08	3.15	5.87	7.52										
VELOCITY FEET PER SECOND	Ĺ	1,13	2.26	5,64	7.90	9	0.51	0.64	0.77	0.89	207	CI.1	87.1	621	1 92	2.05	2.30	2.56	3.20	3.84	4 8	5.11	9.6	8	10.23										
GALLONS PER MINUTE			N	'n	~ <u>\$</u>	5 42	8	8	99	35	ę :	ç s	2 9	8 2	5	2 8	6	100	125	150	175	500	8 8	360	400	450	20	750	1000	1250	8	2000	2200	2500	000
			-	-	_	-	_	-	-	-		-	-	_	_	-	-	_	-							_	-	-	-	-					_

FRICTION LOSS POUNDS PER						ē	g	8 8	8	8	ę (2 2	Ŕ	8	8 :	६ छ	16	8 1	8 9	3.50	4.64								Γ		
SQUARE INCH	4 IN.					.02	90	12	14	.18	នុខ	ર સ્	55	60	88, 5	1.59		2,98			10.72										
FEET VELOCITY FEET PER SECOND						ę,	8	56 B	14	1.8	1.46	8 8	238	58	583	4 8 9	4.85	5.69	89	9.75	11.40								ľ		
FRICTION LOSS POUNDS PER SQUARE INCH	t		_	É S	8	90.	ę.	2 1	2	.28	Ş.	88	Ę	1,00	Ņ	1,84	3.43	4,39	6.0 2 %										T		
FRICTION HEAD FEET	3 IN.			8į ž	8 6	¥.	8	0E. 0E	ŝ	8	62.	1.08	1.87	2.31	68.5	4.25 5.91	7.92	10.14	15.34 21.84												
VELOCITY FEET PER SECOND				ą s	হ	R	6	1.22	6	1,94	2.19	2.42	3,40	3,89	4.38	6.08 6.08	7.29	55 i	19.90												
FRICTION LOSS POUNDS PER SQUARE INCH	ž			<u>5</u> 8	9 8	60	£.	នុខ	.43	55	69.	1,18	1.54	1.97	2.46	2.99	8.33							ē	8	g	g :	ŝ ₽	2	8	1,43
FRICTION HEAD FEET	2,1/2			છું ક	8 8	1	18; I	8 2	8	1.27	1.67	8 2	3.66	\$	5.68	6.91 10.44	14.62					18 IN		8	.05	.05	£ [β. Bi		1.57	
VELOCITY FEET PER SECOND				S6. 98	E R	1.05	4	2.11	2.46	2.81	3.16	4.22	4.92	5.62	6.33	8.79	10.60					_		5		_	2.2		+-	9.72	14.60
FRICTION LOSS POUNDS PER SQUARE INCH	Ň			នុខ	8 P.	ęi		S R	-	1.27	81	271	3.60			10.50					7		,02		-	-	99		[`	1.20	
FRICTION HEAD FEET	2 IN			£ \$		ę		8 8		2.93		4 (D				16.10 24.26					16 IN		.05	-			23			2.77	
VELOCITY FEET PER SECOND				<u>8</u> 8	9.1	64.1	1.99	2.48	3.48	3.98	4,48	5.98	6.97	7.97	8.96	9.96						t.	123	1.48	1.72	1.87	23	184	6 15	12.30	
FRICTION LOSS POUND'S PER SQUARE IN CH	Ň		8	8 ¢	2, 8	ġ	108	28	3.07	3.92	ą (531	11.10							ő	20	80.	60.	.04			8		·		
FRICTION HEAD FEET	1-1/2		50.	18	69	1.48	2.52	9.79 5.31	7.09	9.06	11.27	13.70	25.84						14 IN.	S.	8,8						54 8		1		
VELOCITY FEET PER SECOND			g	R, -	- 89	2.37	3.16	3,96	5,53	6.32	F 2	9,48	1.10							.94	1.09	14	1.56	1.87	2.19	2.50	2.81 19.1	9 20	7.80		
FRICTION LOSS POUNDS PER SQUARE INCH		·		SĘ S		I	3.15	6.68	8.89	11.38	14,18								10	S,	8 8	ŝą	8	6	6	6	₽, \$	2	1.07		
FRICTION HEAD FEET	-1/4 IN	ġ	8	ŝŻ	2:01	4.27	7.28	11.02	20.54	26.29	88								8	8	6	\$ 8	12	16	23	8	16	f 8	2.47		
VELOCITY FEET PER SECOND			_	<u>8</u> F		3.67		6.12		9.79	10									1.19	1.39		-	¢4		_	3.57		9.65		
FRICTION LOSS POUNDS PER SQUARE INCH					2.70	5.72	8.74	20.63								6				90											
FRICTION HEAD FEET	1 IN.			1.73				416						10 IN.		.02	Ľ.	8		-	121						1.13	- 42			
VELOCITY FEET PER SECOND		86.	-18	1.95	3,89	5.84	7.78	9.73								£.	96	23	891	1.89	221	282	3.15	3.78	4.41	50	5.67	12,60			
FRICTION LOSS POUND'S PER SQUARE IN CH		.15	đ	2.96	10.68	22.59						é	8	Si :	8	88	.05	6	60. E	.19	92; 92	1	.49	69		-	1.46		Į		
FRICTION HEAD FEET	3/4 IN.	36	1.25	6.81	24.62	52.18					0	.02	5	.05	6	60.	.12	₽. :	5	4 -	8		-				3.37				
VELOCITY FEET PER SECOND		.68	1.37	3.42	6,85	10.30						20	8	62.	8	8 2	1.48	27.1	1.91	58	3.44	4.43	4,92	5,90	6,89	7.87	8.85	50'R			
FRICTION LOSS POUND'S PER SQUARE INCH		8	1,98	10.84	39.12				10	g	8	8 8	8	ŝ	8	6 F.	16	N I	2	5	82	021	1.46	2:04	2.72						
FRICTION HEAD FEET	1/2 IN.	1.27	4.60	25.04	90.37		8 IN		8	8	8	6 6	8	ę.	14	₽ Kļ	37	ę :	8	132	1.73		3,37	4.71	6.28						
VELOCITY FEET PER SECOND		1.17	2.34	5.84 8.18	11.70				.54	8	8	F. 6	1.08	1.23	1.39	26' L 26' L	2.31	2,69	3.85	4.62	5.39	6.83	7.69	82.6	10.80						
GALLONS PER MINUTE		-	04	wo h	ę.	15	8	88	38	4	\$	2 8	۶	8	8	8 8	5	12	8 8	8	3	3	200	609	700	800	006	000	2200	500	1200

TABLE 24

ROLINE-POLYPROPYLENE 45 FLOW RATES														
SQUARE INCH									1					
FRICTION HEAD	14 IN.					32	88689	2,86,2						
VELOCITY FEET PER SECOND						1.07	611 19 19 19 19 19 19 19 19 19 19 19 19 1	2.38 5.94 1.38						
FRICTION LOSS POUNDS PER						588	8888	5.8.8						
SQUARE INCH FRICTION HEAD	12 IN.					888	9899779	ននេះ						
FEET VELOCITY						8.5.8	1.51 2.41 2.41 2.41 2.41	3.02 6.03 7.54						
FEET PER SECOND FRICTION LOSS POUNDS PER					2.8	88888		5 <u>5 8</u>						
SQUARE INCH FRICTION HEAD	10 IN.				88	86849	ខ្ខុនុម្មន	22 9399 9399						
VELOCITY FEET PER SECOND	-				2, 8,	218 198 198 198 198 198 198 198 198 198 1	2.40 2.87 3.35 4.31	4.78 9.50 11.96						
FRICTION LOSS POUNDS PER					10,00,00	895555	288898	2.47						
SQUARE INCH FRICTION HEAD FEET	8 IN.				8888	일일입용법	£88§§	1.57						
VELOCITY FEET PER SECOND					85 17 18 1 18 19 19 19 19 19 19 19 19 19 19 19 19 19	2.24 2.62 2.62 3.37	3.74 5.58 5.58 5.58	7,48						
PRICTION LOSS POUNDSPER SQUARE INCH				5888	4885 ž	5 6 6 6 9 8	89953	2.71						
FRICTION HEAD	8 IN.			8855	87,59,49	s 1985 5	1.73 2.43 3.23 4.13 6.15	6.29						
VELOCITY FEET PER SECOND				នងដង្	1.17 1.46 1.76 2.05 2.05 2.05	2.90 3.51 4.10 5.27 5.27	5.85 7.02 8.19 10.53 10.53	11.78						
FRICTION LOSS POUNDS PER SQUARE INCH		6	88888	88288	机管理控制	81 200 200 200 200 200 200 200 200 200 20		2864	10					
FRICTION HEAD	4 IN.	80	86668 ⁶¹	网络网络龟	88558	2.88 4.18 5.59 7.14 8.87	24 IN.	8828	8					
VELOCITY FEET PER SECOND		8	84 X 54 85 1	1.24	2.48 3.10 3.72 4.34 4.34	6.20 7.44 8.68 9.98 11.17		1.51 1.69 7.7.6 7.50 7.50 7.50	7.55					
FRICTION LOSS POUNDS PER		588	88857	12848	82 1,23 1,76 2,83 2,83 2,83 2,83 2,83 2,83 2,83 2,83	3.41 4.78		22845	R.					
SQUARE INCH . FRICTION HEAD FEET	3 IN:	886	일흔직원원	ននេះនន្	1.43 2.17 3.07 4.07 5.22	11.04	20 IN.	8828월	1.73					
VELOCITY FEET PER SECOND		际载荷	8-848	1.84 2.22 2.58 2.58 2.58 3.33	3.69 4.65 6.54 7.36	9.24 80.11		1,20 2,38 5,98 8,97 8,97	12.00					
FRICTION LOSS POUNDS PER SQUARE INCH		29,58	21 F 21 E 2	\$P\$\$P\$	1.53 2.34 2.24 4.31 6.53		ā	88287	1,26					
FRICTION HEAD	2-1/2 IN.	8 8 º =	88288	182 238 238 238 238 238	3.63 5.41 7.48 9.96 12.77		81 N. 84	응보양운 <u>두</u>	2.91					
VELOCITY FEET PER SECOND	à	មនត្	1.34 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.5	2.67 3.26 3.74 4.27 4.80	5.34 8.61 9.25 10.68		001	1,40 2,96 3,69 7,39 11,00	14.80					
PRICTION LOSS POUNDSPER SQUARE INCH		288668	28282	88.1 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	5.56		2888	81468						
FRICTION HEAD	2 IN.	865888	29 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 8 1	555 555 545 545 545 545 545 545 545 545	8.25 12.43	18 IN.	8886	5.원왕 <u>구</u> 왕						
VELOCITY FEET PER SECOND		8 8 R 8 9 5	1-2-2-2-8 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	8 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.44		2228	1.87 3.74 3.74 9.35 9.35 14.00	Ц					
GALLONS PER MINUTE		∾∽₽₽8	*****	88288	125 125 175 200	88 88 88 88 89 80 80 80 80 80 80 80 80 80 80 80 80 80	88288	1000 25000 25600 75600 75600	10060					

SUPER/PROLINE - PVDF FLOW RATES

					_	_	_		
FRICTION LOSS POUNDS PER SQUARE INCH			2888	88882	କ୍ଳ୍ୟ ଖ୍ୟ	88.57598 88.57588	20 4 20 4		Γ
FRICTION HEAD FEET	4 IN.		8866	855298	64885	198 198 198 198 198 198	10.79		
VELOCITY FEET PER SECOND			8845	89395	258 248 248 258 258 258 258 258 258 258 258 258 25	88838 44958	9.00 11.20		
FRICTION LOSS POUNDS PER SQUARE INCH		5	84885	<u> </u>	\$5 주 관월	2.40 9.08 9.08			Γ
FRICTION HEAD FEET	3 IN	8	김 왕 후 원 원	***	114 124 281 281 281	4.85 6.19 20.93			
VELOCITY FEET PER SECOND		ę	នុននុទ្ធខ្ល	97 8 8 8 R	9,10 5,56 5,86 5,86 5,86 5,86 5,86 5,86 5,86	7.94 9.53 11.80			
FRICTION LOSS POUNDS PER SQUARE INCH	N.	58	88958	ষ্ণহৃৎ	55555 5855 885 885 885 885 885 885 885	4.37 5.90			Γ
FRICTION HEAD FEET	2-4/2 []	88	원원원원주	ខងនម្លីដ	2.38 2.38 5.43 7.60 7.60	10.09			
VELOCITY REET PER SECOND		83	86558	222222 22222	9955 <u>9</u>	8.8 0.10			
PRICTION LOSS POUNDSPER SQUARE INCH		888	왕전영송용	25 11 12 12 12 12 12 12 12 12 12 12 12 12	8.45 1.47 1.47 1.47 1.47 1.47				
FRICTION HEAD REET	2 IN.	80.2	884258	- 2 2 2 8 2 2 2 2 8 2 2 2 2 8	6.44 8.02 8.73 14.74				
VELOCITY FEET PER SECOND		468	295 295 295 295 295 295 295 295 295 295	324 266 567 567 567 567 567 567 567 567 567 5	6.48 7.29 8.10 10.13				
FRICTION LOSS POUNDS PER SQUARE INCH	7	2858	운전 <u>단</u> 법원	288 337 585 585 585 585 585 585 585 585 585 58	9%				
FRICTION HEAD FEET	1-1/2 IN	ន់ដល់សំ	8,5,8,8,8,8,8	6.14 7.66 9.29 17.30	22.18				
VELOCITY FEET PER SECOND	Ĺ	网络花线	238 238 238 24 7 7 7 7 7 7 7 8 33 8 7 7 7 7 7 7 7 7 7	538 673 878 942 942	10.80				
FRICTION LOSS POUNDS PER SQUARE INCH	_	28588	1.31 2.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	8.06 12.20		- ē	88888	88988	101
FRICTION HEAD	4-1/4 IN	ឌេមនុទ្ធ	3.03 5.17 7.78 7.78 7.78 10.83 14.65	18.62 23.10 28.18		12 IN. 54	88669	2 8 8 8 9 2 8 9 2 8 9 2 8 9 2	455
VELOCITY FEET PER SECOND		전성형호영	885 885 885 885 885 885 885 885 885 885	8.56 9.56 10.62		<u>8</u>	뒫횖뒫둗	2.41 2.71 3.02 6.03 7.54	15.10
FRICTION LOSS POUNDS PER SQUARE INCH		81.81.8	4.57 7.79 11.60 16.50			28833	58228	82 FF 192	
FRICTION HEAD FEET	1 IN	64928	8701 8712 8712		10 IN	98687.	은 은 의 의 원 왕	201 2,50 3,68	
VELOCITY FEET PER SECOND		왕드 <u>루</u> 3 왕	5.35 7.10 8.68 10.70			8,5,1,8,5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.71 4.79 9.58 12.00	L
FRICTION LOSS POUNDS PER SQUARE INCH		201 201 201 201 201 201	15.90 01.82		00 00	84689	위워리위눅	82.55	
FRICTION HEAD FEET	3/4 IN	양왕왕종(일) 11월 11월 11일 11일 11일 11일 11일 11일 11일 11일	87 98 88 98		18 19 19 19 19 19 19 19	58998 8	<u>영송립</u> 면 ố	2102 1120 1120 1120 1120	
VELOCITY FEET PER SECOND		.58 1.17 2.02 4.09 5.84	87.8 07.11		885	1917 1917 1918 1918 1918 1918 1918 1918	2337	5.73 6.73 7.48 7.48 7.48	L
FRICTION LOSS POUNDS PER SQUARE INCH		887288 887288		588	88288	응호한영영	훅듁杆 <u>뙵</u> 号	1.79	
FRICTION HEAD	4/2 IN.	.68 8.14 8.14 31.68 81.68 61.91		8 ₩ 888	99856	ୟଟ୍ୟକ୍ଟ	211 211 212 213 213 213 213 213 213 213	6.15	
VELOCITY FEET PER SECOND		1.00 2.00 7.00 10.00		\$1 R; 81	885.88	2.05 2.34 2.93 3.61 4.10	4.88 5.27 5.85 7.02 8.19 8.19	9.36	
GALLONS PER MINUTE		- 040 h Q	¥ ឌ ฆ ฆ ജ ജ	4498R	88888	175 250 350 350	500 500 700 500 500 700 500 500	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000

	č		VALVES		1.7						VALVES UC		BALL FU	8	4	8	FITTINGS 90	4			
		COTIVERITORIAL			Y-Pattern			Comentanea		Wedge Disc.	Plug Disc. or Plug Disc		Full Port Design	90" Standard Elbow	45* Standard Elbow	90" Long Radius Elbow	90" Street Elbow	45* Street Elbow	Square Corner Elbow	Standard	<u>8</u>
	With no obstruction in flat, bevel, or plug type seat F	With wing or pin guided disc F		(No obstruction in fiat, bevel or plug type seat)	-With stem 60 degrees from run of pipe line F	-With stem 45 degrees from run of pipe line	With no obstruction in flat, bevel, plug type seat	With wing or pin guided disc F		Three-Quar	Oner	One-Out	ł	*	*	lbow			OW.	With Flow through run	With Flow through branch
	Fully Open	Fully Open			Fully Open	Fully Open	Fully Open	Fully Open	Fully Open	Quarters Open	One-Half Open	One-Guarter Open	Fully Open								
2	10.3	13.7			6.3	4.4	11	6.1	6	Ð	4.9	27.3		0.9	0.5	0.6	1.5	0.8	1.7	9.6	1.8
	17.6	23.3			9.1	2.5	7.5	10.4	0.7	1.8	8.8	45.7		28	0.8	1.0	2.6	t. S	3.0	2	4.0
2	23.3	906			12.0	10.0	10.0	13.7	0.9	2.4	11.0	61.B		2.1	1.1	1.4	3.4	8	3.9	8.1	5.1
٤	29.7	39.3			15.3	12.7	12.7	17.5	5	<u>.</u> 9	14.0	78.7		2.6	1,4	1.7	4,4	2.3	5.0	1.7	6.0
1%	39.1	61.8			20.1	16.7	16.7	23.0	5	4.0	18.4	103.5	San	3.5	8	2.3	5.8	3.0	6.5	23	6.9
ž	45.6	60.4			23.5	19.5	19.5	26.8	5	4.7	21.5	120.8	Same as an	\$	2.1	2.7	6.7	35	7.6	2.7	8.1
2	59.6	77.5			30.1	25.0	25.0	34.5	2.2	6.0	27.6	155.0	r equiva	65	2.8	4.3	88	4.5	98	4.3	12
2%-	69:95	92.6			36.0	29.8	29.8	41.2	2.7	7.2	32.9	185.2	equivalent of S	6.2	3.3	5.1	10.3	5.4	11.7	53	14.3
2	6'98	115.1			44.7	37.1	1.7E	51.1	3.3	8.9	6.04	230.1	Sch. 80 F	7.7	4.1	6.3	12.8	6.6	14.6	6.3	16.3
•	114.1	151.0			58.7	48.6	48.6	1.73	4.4	11.7	53.7	302.0	Pipe	10.1	5.4	8.3	16.8	8.7	19.1	8.9	22.1
5	171.8	227.4			88.4	73.3	73.3	101.1	6.6	17.7	80.9	454.9		15.2	8.1	12.5	52.3	13.1	28.8	12.5	32.2
20	226.1	299.3			116.4	96.4	96.4	133.0	86	23.3	106.4	598.6		20.0	10.6	16.5	33.3	17.3	37.9	18.5	999
è	283.9	375.8			146.1	121.1	121.1	167.0	10.9	29.2	133.6	751.5		22.1	13.4	20.7	41.8	21.7	47.6	20.7	5
	338.2	147.7			174.1	144.3	144.3	199.0	12.9	34.8	159.2	896.4		29.8	15.9	24.7	87.68	25.9	58.7	24.7	59.7

EQUIVALENT LENGTH OF THERMOPLASTIC PIPE IN FEET

Water Velocity = 5 feet per second Static Pressure in System = 300 psi Total System Pressure = Static Pressure + Surge Pressure: Pt = PxPs

$$= 300 + 5 \times 26.2$$

Maximum circumferential stress is calculated from a variation of the ISO Equation:

$$S = \frac{Pt (Do-t)}{2t} = \frac{431(1.660-.191)}{2x.191} = 1657.4$$

Safety Factor = 20 second strength = 8470 = 5.11
Maximum stress 1657

Table 28 gives the results of safety factor calculations based upon service factors of 0.5 and 0.4 for the 1-1/4" PVC Schedule 80 pipe of the example shown above using the full pressure rating calculated from the listed hydrostatic designstress.

In each case, the hydrostatic design basis = 4000 psi, and the water velocity = 5 feet per second.

Comparing safety factor for this 1-1/4" Schedule 80 pipe at different service factors, it is instructive to note that changing from a service factor of 0.5 to a more conservative 0.4 increases the safety factor only by 16%.

$$100 \times \left(\frac{1 - 3.38}{4.03} \right)^{= 16\%}$$

In the same way, changing the service factor from 0.4 to 0.35 increases the safety factor only by 9%. Changing the service factor from 0.5 to 0.35 increases the safety factor by 24%. From these comparisons it is obvious that little is to be gained in safety from surge pressures by fairly large changes in the hydrostatic design stress resulting from choice of more conservative service factors.

Table 28

SAFETY FACTORS VS. SERVICE FACTORS - PVC TYPE 1 THERMOPLASTIC PIPE

	PIPE CLASS	SERVICE FACTOR	HDS PSI	PRESSURE RATING PSI	SURGE PRESSURE AT 5 FT/SEC	MAXIMUM PRESSURE PSI	MAXIMUM STRESS PSI	SAFETY FACTOR
ſ	1-1/4" Sch. 80	0.5	2000	520	131.0	651.0	2503.5	3.38
ſ	1-1/4" Sch. 80	0.4	1600	416	131.0	547.0	2103.5	4.03

Pressure rating values are for PVC pipe, and for most sizes are calculated from the experimentally determined long-term strength of PVC extrusion compounds. Because molding compounds may differ in long term strength and elevated temperature properties from pipe compounds, piping systems

consisting of extruded pipe and molded fittings may have lower pressure ratings than those shown here, particularly at the higher temperatures. Caution should be exercised in design operating above 100°F.

FRICTION LOSS CHARACTERISTICS OF WATER THROUGH PLASTIC PIPE. FITTINGS AND VALVES

INTRODUCTION

A major advantage of thermoplastic pipe is its exceptionally smooth inside surface area, which reduces friction loss compared to other materials.

Friction loss in plastic pipe remains constant over extended periods of time, in contrast to some other materials where the value of the Hazen and Williams C factor (constant for inside roughness) decreases with time. As a result, the flow capacity of thermoplastics is greater under fully turbulent flow conditions like those encountered in water service.

CFACTORS

Tests made both with new pipe and pipe that had been in service revealed C factor values for plastic pipe between 160 and 165. Thus, the factor of 150 recommended for water in the equation below is on the conservative side. On the other hand, the C factor for metallic pipe varies from 65 to 125, depending upon age and interior roughening. The obvious benefit is that with plastic systems it is often possible to use a smaller diameter pipe and still obtain the same or even lower friction losses.

The most significant losses occur as a result of the length of pipe and fittings and depend on the following factors.

- 1. Flow velocity of the fluid.
- 2. The type of fluid being transmitted, especially its viscosity.
- 3. Diameter of the pipe.
- 4. Surface roughness of interior of the pipe.
- 5. The length of the pipeline.

Hazen and Williams Formula

The head losses resulting from various water flow rates in plastic piping may be calculated by means of the Hazen and Williams formula:

$$f = 0.2083 \left(\frac{100}{C}\right)^{1.852} \times \frac{q^{1.852}}{Di^{4.8655}}$$
$$= .0983 \frac{q^{1.852}}{Di^{4.8655}} \text{ for } C = 150$$

Where:

- = Friction Head in ft. of Water per 100 ft of Pipe f
- P = Pressure Loss in psi per 100 ft. of Pipe
- Di = Inside Diameter of Pipe, in.
- = Flow Rate in U.S. gal/min q
- Ċ = Constant for Inside Roughness (C equals 150 thermoplastics)

FLOW OF FLUIDS AND HEAD LOSS CALCULATIONS

Tables, flow charts, or a monograph may be used to assist in the design of a piping system depending upon the accuracy desired. In computing the internal pressure for a specified flow rate, changes in static head loss due to restrictions (valves, orifices, etc.) as well as flow head loss must be considered.

The formula in Table 29 can be used to determine the head loss due to flow if the fluid viscosity and density and flow rate are known. The head loss in feet of fluid is given by:

$$h = \frac{186 \text{ fLV}}{\text{d}^2}$$

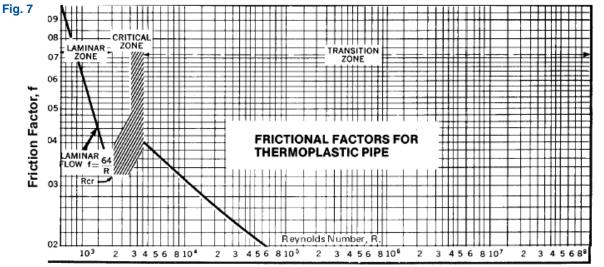
f, the friction factor, is a function of the Reynolds number, a dimensionless parameter which indicates the degree of turbulence.

The Reynolds number is defined as: f=

Figure 7 below shows the relationship between the friction factor, and the Reynolds number, R. It is seen that three distinct flow zones exist. In the laminar flow zone, from Reynolds numbers 0 to 2000, the friction factor is given by the equation:

<u>dV</u>W

12U


Substituting this in the equation for the head loss, the formula for laminar flow becomes:

$$h = \frac{143 \text{ ULV}}{\text{Wd}^2}$$

Flow in the critical zone, Reynolds numbers 2000 to 4000, is unstable and a surging type of flow exists. Pipe lines should be designed to avoid operation in the critical zone since head losses cannot be calculated accurately in this zone. In addition, the unstable flow results in pressure surges and water hammer which may be excessively high. In the transition zone, the degree of turbulence increases as the Reynolds number increases. However, due to the smooth inside surface of plastic pipe, complete turbu-lence rarely exists. Most pipe systems are designed to operate in the transition zone.

TABLE 29

	FORMULAS	FOR HEA	D LOSS CALCULA	TIONS
R=	dVw	SYMBOL	QUANTITY	UNITS
R= R= R= W h= .	$\frac{0.00}{12 \text{ u}}$ $\frac{3160 \text{ G}}{\text{kd}}$ $\frac{2220B}{\text{kd}}$ $22,735 \frac{\text{Qw}}{\text{zd}}$ hen R = 4000: 186 \frac{\text{fLV}^2}{\text{d}} $0311 \frac{\text{fLG}^2}{\text{d}^5}$ $\frac{\text{fLB}^2 \text{W}}{9450\text{d}^2}$ $43.5 \frac{\text{fLC}^2 \text{W}}{\text{d}^5}$	B d f G h k L P Q R u V w	flow rate inside diameter friction factor flow rate head loss kinematic viscosity length of pipe pressure drop flow rate Reynolds number absolute viscosity velocity density	barrels/hour inches dimensionless gallons/minute feet of fluid centistokes feet lbs/in ² ft ³ /sec. dimensionless lb/ft-sec. ft./sec. lbs/ft ³
		z	absolute viscosity	centipoises

MANNING EQUATION

The Manning roughness factor is another equation used to determine friction loss in hydraulic flow. Like the Hazen-Williams C factor, the Manning "n" factor is an empirical number that defines the interior wall smoothness of a pipe. PVC pipe has an "n" value that ranges from 0.008 to 0.012 from laboratory testing. Comparing with cast iron with a range of 0.011 to 0.015, PVC is at least 37.5 percent more efficient, or another way to express this would be to have equal flow with the PVC pipe size being one-third smaller than the cast iron. The following table gives the range of "n" value for various piping materials.

TABLE 30

PIPE MATERIAL	"n" RANGE
CAST IRON	0.011-0.015
WROUGHT IRON (BLACK)	0.012-0.015
WROUGHT IRON (GALVANIZED)	0.013-0.017
SMOOTH BRASS	0.009-0.013
GLASS	0.009-0.013
RIVETED AND SPIRAL STEEL	0.013-0.017
CLAY DRAINAGE TILE	0.011-0.017
CONCRETE	0.012-0.016
CONCRETE LINED	0.012-0.018
CONCRETE-RUBBLE SURFACE	0.017-0.030
PVC	0.008-0.012
WOOD	0.010-0.013

COMPENSATING FOR THERMAL EXPANSION

Thermoplastics exhibit a relatively high coefficient of thermal expansion (see Relative Properties Chart page 13 and 14)—as much as ten times that of steel. When designing plastic piping systems, expansion of long runs must be considered. Installation temperature versus working temperature or summer to winter extremes must be considered.

One area where extreme temperature variations can occur is in a polypropylene drain application. Temperature in waste systems depends on quantity and temperature of the waste liquids discharged into the system. In general, the quantities of wastes discharged through waste systems from laboratories in educational institutions will be relatively small (a few gallons at a time), while industrial laboratories and processing systems may discharge large quantities of very hot or very cold water.

There are several methods of controlling or compensating for thermal expansion of piping systems: taking advantage of off-sets and change of direction in the piping and expansion joints.

- 1. Offsets—Most piping systems have occasional changes in direction which will allow the thermally induced length changes to be taken up in offsets of the pipe beyond the bends. Where this method is employed, the pipe must be able to float except at anchor points.
- 2. Expansion Joints—Expansion joints for pressure applications are generally expensive.

The expansion loops and offset tables as shown on following pages have been generated for elevated temperatures as noted beneath the table. If the change in temperature and working temperatures are lower than those used to derive expansion loop and offset tables, the figures will be conservative. These tables can be generated for any temperature and expansion by using the following equations and the modulus of elasticity and working stress at the given temperature.

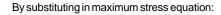
Assume the pipe to be a cantilevered beam. Deflection of a cantilevered beam is ΔL

$$\Delta L = \frac{Pl^3}{3EI}$$

Where:

- P = Force Causing the Pipe to Deflect
- l = Length of Pipe that is Deflected, in.
- E = Modulus of Elasticity at System Temperature, psi I = Moment of Inertia
- e = Coefficient of Thermal Expansion, in./in. °F
- ΔT = Change of Temperature, °F
- ΔL = Change in Length = 12e(ΔT), in.
- L = Length of Straight Pipe Run, ft.

Maximum stress equation:


$$S = \frac{Mc}{I}$$

Where:

- S = Working Stress at the System Temperature, psi
- M = Bending Moment, lb. ft. = Pl

c = Pipe O.D./2, in.

I = Moment of Inertia

$$S = \frac{P/D}{2I}$$

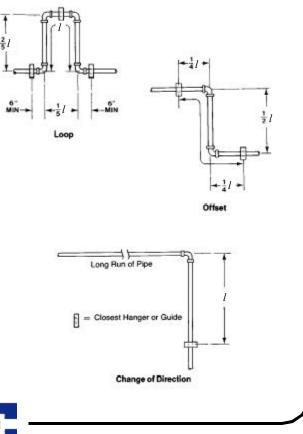
Rearranging:

$$\mathsf{P} = \frac{2\mathsf{S}\mathsf{I}}{l\mathsf{D}}$$

Rearranging deflection equation:

$$\mathsf{P} = \frac{\mathsf{3EI}(\Delta \mathsf{L})}{l^3}$$

Equating both equations:


$$\frac{2SI}{lD} = \frac{3EI(\Delta L)}{l^3}$$

Solving for loop length l:

$$l = \left(\frac{3\text{ED}(\Delta L)}{2\text{S}}\right)^{\frac{1}{2}}$$

FIGURE 4

Expansion Loop and Offset Configurations for Thermoplastics.

THERMAL EXPANSION COMPENSATION

The change in length of Thermoplastic pipe with temperature variation should always be considered when installing pipe

TABLE 31	- Tł	IER	MAL	EXPA	NSIO	NΔL	(in.) –	- PVC	С Туре	e 1
TEMP. CHANGE			1	LENG	TH OF	RUN	IN FE	ET		
∆T°F	10	20	30	40	50	60	70	80	90	100
30	.11	.22	.32	.43	.54	.65	.76	.86	.97	1.08
40	.14	.29	.43	.58	.72	.86	1.01	1.15	1.30	1.44
50	.18	.36	.54	.72	.90	1.08	1.26	1.40	1.62	1.80
60	.22	.43	.65	.86	1.08	1.30	1.51	1.73	1.94	2.16
70	.25	.50	.76	1.01	1.26	1.51	1.76	2.02	2.27	2.52
80	.29	.58	.86	1.15	1.44	1.73	2.02	2.30	2.59	2.88
90	.32	.65	.97	1.30	1.62	1.94	2.27	2.59	2.92	3.24
100	.36	.72	1.03	1.44	1.80	2.16	2.52	2.88	3.24	3.60

Example: Highest temperature expected— 120°F Lowest temperature expected-50°F 70°F

Total Change (ΔT)

Length of run-40 feet

From 70°F row on PVC chart read 1.01 in. length change (AL) NOTE: Table is based on: $\Delta L = 12eL(\Delta T)$

Where: e = Coefficient of Thermal Expansion

- = 3.0 × 10-6 in./in. °F
- L = Length of Run
- ∆T = Temperature Change

TABLE 32 - THERMAL EXPANSION △L(in.) — CPVC Schd. 80

TEMP. CHANGE			1	LENG	THOP	RUN	IN FE	ET		
∆T°F	10	20	30	40	50	60	70	80	90	100
20	.09	.18	.27	.36	.46	.55	.64	.73	.82	.91
30	.14	.27	.41	.55	.68	.82	.96	1.09	1.23	1.37
40	.18	.36	.55	.73	.91	1.09	1.28	1.46	1.64	1.82
50	.23	.46	.68	.91	1.14	1.37	1.60	1.82	2.05	2.28
60	.27	.55	.82	1.09	1.37	1.64	1.92	2.19	2.46	2.74
70	.32	.64	.96	1.28	1.60	1.92	2.23	2.55	2.87	3.19
80	.36	.73	1.09	1.46	1.82	2.19	2.55	2.92	3.28	3.65
90	.41	.82	1.23	1.64	2.05	2.46	2.87	3.28	3.69	4.10
100	.46	.91	1.37	1.82	2.28	2.74	3.19	3.65	4.10	4.56

TABLE 33 - THERMAL EXPANSION $\Delta L(in.)$ — Copoly. Poly.

CHANGE			L	ENG1	TH OF	RUN	IN FEI	ET		
∆T°F	10	20	30	40	50	60	70	80	90'	100
20	.15	.29	.44	.59	.73	.88	1.02	1.17	1.32	1.46
30	.22	.44	.66	.88	1.10	1.32	1.54	1.76	1.98	2.20
40	.29	.59	.88	1.17	1.46	1.76	2.05	2.34	2.64	2.93
50	.37	.73	1.10	1.46	1.83	2.20	2.56	2.93	3.29	3.66
60	.44	.88	1.32	1.76	2.20	2.64	3.07	3.51	3.95	4.39
70	.51	1.02	1.54	2.05	2.56	3.07	3.59	4.10	4.61	5.12
80	.59	1.17	1.76	2.34	2.93	3.51	4.10	4.68	5.27	5.86
90	.66	1.32	1.98	2.69	3.29	3.95	4.61	5.27	5.93	6.59
100	.73	1.46	2.20	2.93	3.66	4.39	5.12	5.86	6.59	7.32

lines and provisions made to compensate for this change in length. The following tables have been prepared to assist you in determining this expansion.

TABLE 34 - THERMAL EXPANSION △L(in.) - PVDF Schedule 80 and Pur-Flo

TEMP. CHANGE			L	ENGT	HOF	RUN	IN FEI	т		
∆T°F	10	20	30	40	50	60	70	80	90	100
20	.19	.38	.58	.77	.96	1.15	1.34	1.54	1.73	1.92
40	.38	.77	1.15	1.54	1.92	2.30	2.69	3.07	3.46	3.84
50	.48	.96	1.44	1.92	2.40	2.88	3.36	3.84	4.32	4.80
60	.58	1.15	1.73	2.30	2.88	3.46	4.03	4.61	5.18	5.76
70	.67	1.34	2.02	2.69	3.36	4.03	4.70	5.38	6.05	6.72
80	.77	1.54	2.30	3.07	3.84	4.61	5.38	6.14	6.91	7.68
90	.86	1.73	2.59	3.46	4.32	5.18	6.05	6.91	7.78	8.64
100	.96	1.92	2.88	3.84	4.80	5.76	6.72	7.68	8.64	9.60

The following expansion loop and offset lengths have been calculated based on stress and modulus of elasticities at the temperature shown below each chart. To calculate the proper length of loop at other temperatures the following formula may be used:

$$\sqrt{\frac{3E(0.D.)\Delta L}{2S}}$$

Where:

- ΔT = Temperature Change in °F
- $S = Thermal Stress, psi = e(\Delta T)E$
- E = Modulus of Elasticity (found in relative properties chart on pages 482 and 483)
- ΔL = Length Change in inches at ΔT (see tables above) I = Total Length of Loop or Offset

TABLE 35 - EXPANSION LOOPS AND OFFSET LENGTHS, PVC Type 1, Schedule 40 and 80

					LEN	атн о	FRU	IN FE	ET		
NOM. PIPE	AVERAGE	10	20	30	40	50	60	70	80	90	100
SIZE	0.D.			LE	GTH	OFL	00P "	?" IN I	NCHE	5	
1/2	.840	11	15	19	22	24	27	29	31	32	34
3/4	1.050	12	17	21	24	27	30	32	34	36	38
1	1.315	14	19	23	27	30	33	36	38	41	43
1%	1.660	15	22	26	30	34	37	40	43	46	48
1½	1.900	16	23	28	33	36	40	43	46	49	51
2	2.375	18	26	32	36	41	45	48	52	55	- 58
3	3.500	22	31	38	44	49	54	58	63	66	70
4	4.500	25	35	43	50	56	61	66	71	75	79
6	6.625	30	43	53	61	68	74	80	86	91	96
8	8.625	35	49	60	69	78	85	92	98	104	110
10	10.750	39	55	67	77	87	96	102	110	116	122
12	12.750	42	60	73	84	94	103	112	119	126	133

NOTE: Table based on stress and modulus of elasticity at 130°F.

 $\Delta T = 50^{\circ}F$

S = 600 psi

E = 3.1 x 105 psi

TABLE 36

EXPANSION LOOPS AND OFFSET LENGTHS, CPVC Schedule 80

NOM.			LENGTH OF RUN IN FEET								
PIPE	AVERAGE	10	20	30	40	50	60	70	80	90	100
SIZE	0.D.			LE	NGT	OFL	.00P *	7" IN I	NCHE	s	
1/2	.840	15	21	26	30	33	37	39	42	45	47
3/4	1.050	17	22	27	31	34	38	40	43	46	48
1	1.315	19	26	32	37	42	46	49	53	56	59
1%	1.660	21	30	36	42	47	52	56	59	63	67
11%	1.900	23	32	39	45	50	55	59	64	67	71
2	2.375	25	35	43	50	56	62	67	71	75	80
3	3.500	31	43	53	61	68	75	81	86	91	97
4	4.500	35	49	60	69	77	85	92	98	103	109
6	6.625	42	59	73	84	94	103	111	119	125	133
8	8.625	48	67	83	96	107	118	127	135	143	152
10	10.750	54	75	93	107	119	131	142	151	160	169
12	12.750	59	82	101	116	130	143	154	164	174	184

NOTE: Table based on stress and modulus of elasticity at 160°F. ΔT = 100°F

S = 750 psi

E = 2.91 x 105 psi

TABLE 37

EXPANSION LOOPS AND OFFSET LENGTHS

	COPOLYMER			LENGTH OF RUN IN FEET									
NOM. PIPE	AVERAGE	10	20	30	40	50	60	70	80	90	100		
SIZE	0.D.		LENGTH OF LOOP "!" IN INCHES										
1/2	.840	18	25	31	36	40	44	47	50	54	57		
3/4	1.050	20	28	35	40	45	49	53	56	60	63		
1	1.315	22	32	39	45	50	55	59	63	67	71		
1%	1.660	25	35	43	50	56	62	66	71	75	79		
1%	1.900	27	38	46	54	60	66	71	76	81	85		
2	2.375	30	42	52	60	67	74	79	85	90	95		
3	3.500	36	52	63	73	81	89	96	103	109	115		
4	4.500	41	58	71	83	92	101	109	117	124	131		
6	6.625	50	71	87	100	112	123	132	142	151	159		
8	8.625	57	81	99	114	128	140	151	162	172	181		
10	10.750	64	90	111	128	143	156	169	181	192	202		
12	12.750	69	98	121	139	155	170	184	197	209	220		

~ 1 NOTE: Table based on stress and modulus of elasticity at 160°F.

E = .83 x 105 lb./in.2

TABLE 38

EXPANSION LOOPS AND OFFSET LENGTHS, PVDF Schedule 80

NOM.				LEN	IGTH	OF RUN IN FEET							
PIPE	AVERAGE	10	20	30	40	50	60	70	80	90	100		
SIZE	0.D.		LE	NGT	HOF	LOC	P "/	" IN I	NCH	ES			
1/2	.840	10	15	18	20	23	25	27	29	31	32		
3/4	1.050	11	16	20	23	26	28	30	32	34	36		
1	1.315	13	18	22	26	29	31	34	36	38	40		
134	1.660	14	20	25	29	32	35	38	41	43	45		
11/2	1.900	15	22	27	31	34	38	41	44	46	49		
2	2.375	17	24	30	34	38	42	46	49	52	54		

NOTE: Table based on stress and modulus of elasticity at 180°F.

ΔT = 100°F S = 1080 psi

E = 1.04 x 105 psi

ΔT = 100*F S = 240 psi

These tables are based on:

- F = As = restraining force, lbs.
- A = Cross sectional wall area, in.2
- $S = e(\Delta T)E^*$
- e = Coefficient of liner expansion*
- E = Modulus of elasticity*
- ∆T = Temperature change, °F
- *All values are available from relative properties chart on pages 482 and 483

TABLE 39

RESTRAINT FORCE "F" (LB.)—PVC Type 1 Schedule 40 and 80.

	SCHED	DULE 40 P	WC	SCHED	DULE 80 P	WC
PIPE SIZE	CROSS SECTIONAL WALL AREA (IN ²)	∆T = 50°F S = 630 PSI	∆T = 100°F S = 1260 PSI	CROSS SECTIONAL WALL AREA (IN ²)	∆T = 50°F S = 630 PSI	∆T = 100*F S = 1260 PSI
1/2	.250	155	310	.320	200	400
3/4	.333	210	420	.434	275	550
1	.494	310	620	.639	405	810
1%	.669	420	840	.882	555	1,110
11/2	.800	505	1,010	1.068	675	1,350
2	1.075	675	1,350	1.477	930	1,860
3	2.229	1,405	2,810	3.016	1,900	3,800
4	3.174	2,000	4,000	4.407	2,775	5,550
6	5.581	3,515	7,030	8.405	5,295	10,590
8	8.399	5,290	10,580	12.763	8,040	16,080
10	11.908	7,500	15,000	18.922	11,920	23,840
12	15.745	9,920	19,840	26.035	16,400	32,800

TABLE 40

RESTRAINT FORCE "F" (LB.), CPVC Schedule 80

PIPE	CROSS SECTIONAL WALL AREA (IN. ²)	∆T = 50°F S = 805 PSI	∆T = 100°F S = 1610 PSI
1/2	.320	260	520
3/4	.434	350	700
1	.639	515	1,030
1%	.882	710	1,420
11/2	1.068	860	1,720
2	1.477	1,190	2,380
3	3.016	2,430	4,860
4	4.407	3,550	7,100
6	8.405	6,765	13,530
8	12.763	10,275	20,550
10	18.922	15,230	30,460
12	26.035	20,960	41,920

TABLE 41

RESTRAINT FORCE "F" (LB,), Copolymer Polypropylene Schedule 80

PIPE	CROSS SECTIONAL WALL AREA (IN. ²)	∆T = 50°F S = 550 PSI	∆T = 100°F S = 1110 PSI
1/2	.320	147	294
3/4	.434	199	398
1	.639	293	586
1%	.882	404	808
11/2	1.068	489	978
2	1.477	663	1,325
3	3.016	1,381	2,762
4	4.407	2,018	4,036
6	8.405	3,899	7,698
8	12.763	5,895	11,690
10	18.922	8,666	17,332
12	26.035	11,929	23,848

TABLE 42

RESTRAINT FORCE "F" (LB.), PVDF Schedule 80

12.01110	anti onor i (ro.)	, reproduced	are oo
PIPE SIZE	CROSS SECTIONAL WALL AREA (IN. ²)	∆T = 50°F S = 850 PSI	∆T = 100°F S = 1700 PSI
1/2	.320	270	540
3/4	.434	370	740
1	.639	540	1,080
1%	.882	750	1,500
11/2	1.068	905	1,810
2	1.477	1,255	2,510
3	3.016	2,565	5,130
4	4.407	3,745	7,490

TABLE 43

RESTRAINT FORCE "F" (LB.), PVDF

PIPE	CROSS SECTIONAL WALL AREA (IN. ²)	∆T = 50° F S = 850 PSI	∆T = 100°F S = 1700 PSI
16	0.167	142	284
94	0.213	180	360
1	0.346	294	588
1%	0.681	579	1158
2	0.876	745	1490
3	1.791	1522	3044
4	2.706	2300	4600

ABOVE-GROUND INSTALLATION OF THERMOPLASTIC PIPING

SUPPORT SPACING OF PLASTIC PIPE

When thermoplastic piping systems are installed aboveground, they must be properly supported to avoid unnecessary stresses and possible sagging.

Horizontal runs require the use of hangers spaced approximately as indicated in tables for individual material shown below. Note that additional support is required as temperatures increase. Continuous support can be accomplished by the use of a smooth structural angle or channel.

Where the pipe is exposed to impact damage, protective shields should be installed.

Tables are based on the maximum deflection of a uniformly loaded, continuously supported beam calculated from:

$$y = .00541 \frac{wL^4}{EI}$$

Where:

y = Deflection or sag, in.

w = Weight per unit length, lb./in.

L = Support spacing, in.

E = Modulus of elasticity at given temp. lb./in.²

I = Moment of inertia, in.4

If 0.100 in. is chosen arbitrarily as the permissible sag (y) between supports, then:

$$L^4 = 18.48 \frac{EI}{W}$$

W = Weight of Pipe + Weight of Liquid, Ib./in.

For a pipe I =
$$\frac{\pi}{64}$$
 (Do⁴ - DI⁴)

Where:

Where:

Do = Outside diameter of the pipe, in. Di = Inside diameter of the pipe, in.

Then:

$$L = .907 \underbrace{E}_{W} (Do^{4} - Dl^{4})^{1/4} = .976 \underbrace{E}_{W} (Do^{4} - Dl^{4})^{1/4} \\ W \qquad \qquad W$$

Table 1

SUPPORT SPACING "L" (FT.) - PVC

TEMP	STR		ay - 1	8 - I	NON	INA	L PIP	E S	IZE	s 15		_
F	1/2	3/4	1	1-1/4	1-10	2	3	4	6	8	10	12
0000				SC	HED	ULE	40 F	VC				
80	4-14	(4-15	. 5	8-15	5-30	6-14	7-1.5	8-14	9-1/2	10-14	11-12	12-15
100	4	4-19	4-34	5-14	5-16	6	7	7-34	9	10	11	11-34
140	5-34	4	4-14	5	5-1A	5.31	6.39	7-12	8-1/2	9.34	10-1/2	11-14
20025	12		2	S	CHE	DULE	E 80	PVC		6 94		
60	4-1/	4-34	5-14	5-34	6	\$-10	в	8-34	10-16	11-14	12-34	14
100	4	4-10	5	5-1/2	5-34	6-14	7-10	8-14	10	.11	12-14	18-14
140	3-34	4-19	4-54	5-14	5-1P	6	7	ß	9-1/2	10-14	11-12	12-10

Table 2

SUPPORT SPACING "L" (FT.) - CPVC Schedule 80

"F					NC	MIN	AL P	IPE	SIZE									
	1/2	3/4	1	1-1/4	1-1/2	2	3	4	6	8	10	12						
73	4	4-1(2	5	5-1/5	5-3/4	6-1/5	7-34	8-1/2	10-14	11-14	12-1/2	13-3/4						
100	4	4-1/2	.5	6-1/2	5-3/4	6-14	7-1/2	8-1/4	to	11	12-1/2	13-14						
120	4	4-114	4-3/4	5-1/4	5-10	8-1/4	7-1/2	8-1/4	9-344	10-12	12	13						
140	4	4-1/4	4-3/4	5-1/4	5-1/2	6	7-1/4	8	9-12	10-12	11-34	12-3(4						
160	3.34	4-114	4-1/2	5	5-1/4	5-34	7	7-34	9-164	10-14	11-1/2	12-10						
180	3-34	4	4-1(2	5	5-1/4	5-3/4	7	7-1/2	9	10-14	11-1/4	12-1/4						
210	3-1/2	4	4-14	4-34	. 6	5-16	5-1/2	7-1/4	8-314	9-3/4	10-34	11-3(4						

ABOVE-GROUND INSTALLATION OF THERMOPLASTIC PIPING

Table 3

SUPPORT SPACING "L" (FT.) - Polypro Schedule 80

TEMP					NC	MIN	AL P	IPE S	SIZE			
Ŧ	1/2	3/4	1	1-16	1-10	2	3	4	6	8	10	12
73	5.34	4	4-1/2	4-3/4	5	5-1/2	6-1.2	7-114	8-1/2	9-1/2	10-1/2	11-16
120	3-1/2	3-344	4	4-1G	4-3/4	5	8	6-34	8	8-34	0-34	10-10
140	3	3-10	3-34	- 4	4-1/4	4-1/2	5-1/2	ß	7-1/4	8	8-34	9-1/2
160	3	3	3-1/2	3-3/4	4	4-1/4	5-1.4	5-3.4	6-34	7-1/2	8-14	9
.180	2-34	3	3-1/4	3-16	3-3(4	4	5	5-1/2	6-1/2	7	7-3/4	8-1/2
200	2-1/2	2-3/4	3	3-16	3-10	4	4.34	5-14	6	6-34	7-1/2	8
212	2-1/2	2-34	з	3-10	3-14	3-34	4-1.2	5	5.94	6-1/2	7-54	7-3/4

Support spacing subject to change with SDR piping systems and different manufacturers' resins. See manufacturers support spacing guide prior to installation.

SUPPORT SPACING "L"(FT.) - Proline & Super Proline

Table 4

			TEM	PERAT	URE		
PIPE SIZE (IN.)	68°F/ 20°C	86°F/ 30°C	104°F/ 40°C	122°F/ 50°C	140°F/ 60°C	158°F/ 70°C	176°F 80°C
1/2	3.0	2.5	2.5	2.0	2.0	2.0	2.0
3/4	3.0	3.0	2.5	2.5	2.5	2.5	2.0
1	3.5	3.0	3.0	3.0	3.0	2.5	2.5
1-1/2	4.0	3.5	3.0	3.0	3.0	3.0	3.0
2	4.5	4.0	4.0	3.5	3.0	3.0	3.0
2-1/2	5.0	4.5	4.0	4.0	3.5	3.0	3.0
3	5.5	5.0	4.0	4.0	4.0	3.5	3.5
4	6.0	5.0	5.0	4.0	4.0	4.0	4.0
6	7.0	6.0	6.0	5.0	5.0	4.5	4.5
8	7.5	7.0	6.0	6.0	5.5	5.0	5.0
10	8.5	7.5	7.0	6.5	6.0	6.0	5.5
12	9.5	8.5	8.0	7.0	7.0	6.5	6.0
14	10.0	8.5	8.0	7.5	7.0	6.5	6.5
16	10.5	9.5	8.5	8.0	7.5	7.0	6.5
18	11.5	10.0	9.0	8.5	8.0	7.5	7.0
20	12.0	10.5	9.5	8.5	8.5	8.0	7.5
24	13.5	11.5	10.0	9.5	8.5	8.0	7.5

This support spacing chart shows spans for polypropylene (PP) SDR 11, PP SDR 17.6, and PVDF pipes. For PP SDR 32, multiply span times .55 for the reduced value.

The support spacing chart shown above is based on liquids with a specific gravity of 1.0. Spacing should be reduced by 10% for liquids having 1.5 specific gravity, 15% for 2.0 s.q., and 20% for 2.5 s.q.

Table 5

SUPPORT SPACING "L" (FT.) - PVDF Schedule 80

TEMP	-		a 7	a 1	NO	MIN/	AL PI	PE S	IZE		az 16	_
"F	1/2	3/4	1	1-14	1-1/2	2	3	4	6	8	10	12
68	3-12	3-34	4-1/4	4.10	4-34	5-1/4	6-1/2	7	8-1/2	9-1/2	10-1/2	11-14
120	ġ	3-14	3-34	4	4-1/4	4-3/4	5-3/4	B-1,44	7-1/2	8-1/4	9-14	10
160	2-344	з	3-1/2	3-34	4	4-1/4	5-14	5-314	6-3/4	7-1/2	B-1/2	9
200	2-1/2	2-34	3	3-12	3-1/2	.4	4-3/4	5-114	6-1/4	ÿ	7-34	B-1.4
240	2-14	2-1.2	2-34	â	3-1/4	3-1/2	4-14	4-314	5-1/2	6-14	7	7-1/2
280	2-14	2-1/2	2-34	з	3-1/4	3-1/2	4	4-1/2	5-1/2	6	6-3.4	7-14
280	2	2-14	2-1/2	2-34	3	3-1/4	4	4-114	5-1/4	5.34	6-1/2	7

Support spacing subject to change with SDR piping systems and different manufacturers' resins. See manufacturers support spacing guide prior to installation.

NOTE: All tables shown are based in .100 inch SAG between supports.

BELOW-GROUND INSTALLATION OF THERMOPLASTIC PIPING

WIDTH

The width of the trench should be sufficient to provide adequate room for "snaking" the pipe from side to side along the bottom, as described below, and for placing and compacting the side fills. The trench width can be held to a minimum with most pressure piping materials by joining the pipe at the sur-face and then lowering it into the trench after adequate joint strength has been obtained.

BEDDING

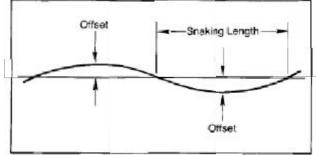
The bottom of the trench should provide a firm, continuous bearing surface along the entire length of the pipe run. It should be relatively smooth and free of rocks. Where hardpan, ledge rock or bounders are present, it is recommended that the trench bottom be cushioned with at least four (4) inches of sand or compacted fine-grained soils.

SNAKING

To compensate for thermal expansion and contraction, the snaking technique of offsetting the pipe with relation to the trench center line is recommended.

Example:

Snaking is particularly Important when laying small diameter pipe in hot weather. For example, a 100-foot length of PVC Type I pipe will expand or contract about ¾" for each 20°F temperature change. On a hot summer day, the direct rays of the sun on the pipe can drive the surface temperature up to 150°F. At night, the air temperature may drop to 70°F. In this hypothetical case, the pipe would undergo a temperature change of 80°F—and every 100 feet of pipe would contract 3". This degree of contraction would put such a strain on newly cemented pipe joints that a poorly made joint might pull apart.


Installation:

A practical and economical method is to cement the line together at the side of the trench during the normal working day. When the newly cemented joints have dried, the pipe is snaked from one side of the trench to the other in gentle alternate curves. This added length will compensate for any con-traction after the trench is backfilled. See Figure 1.

Figure 1

The illustration shown below gives the required loop length, in feet, and offset in inches, for various temperature variations.

Snaking of Pipe Within Trench.

Snaking of thermoplastic pipe within trench to compensate for thermal expansion and contraction.

Table 1

SNAKING LENGTH VS. OFFSET (IN.) TO COMPENSATE FOR THERMAL CONTRACTION

				CEME				1		N
SNAKING LENGTH	10*	20*	30*	40*	50*	60*	70*	80*	90"	100*
(FT.)				LO	OP OF	SET (I	N.)			
20	2.5	3.5	4.5	5.20	5.75	6.25	6.75	7.25	7.75	8.00
50	6.5	9.0	11.0	12.75	14.25	15.50	17.00	18.00	19.25	20.25
100	13.0	18.0	22.0	26.00	29.00	31.50	35.00	37.00	40.00	42.00

DETERMINING SOIL LOADING FOR FLEXIBLE PLASTIC PIPE, SCHEDULE 80

Underground pipes are subjected to external loads caused by the weight of the backfill material and by loads applied at the surface of the fill. These can range from static to dynamic loads.

Static loads comprise the weight of the soil above the top of the pipe plus any additional material that might be stacked above ground. An important point is that the load on a flexible pipe will be less than on a rigid pipe buried in the same manner. This is because the flexible conduit transfers part of the load to the surrounding soil and not the reverse. Soil loads are minimal with narrow trenches until a pipe depth of 10 feet is attained.

Dynamic loads are loads due to moving vehicles such as trucks, trains and other heavy equipment. For shallow burial conditions live loads should be considered and added to static loads, but at depths greater than 10 feet, live loads have very little effect.

Soil load and pipe resistance for other thermoplastic piping products can be calculated using the following formula.

$$Wc' = \Delta x (EI + .06I E'r^3) 80$$

- Wc' = Load Resistance of the Pipe, lb/ft.
- $\Delta x =$ Deflection in Inches @ 5%(05 x I.D.)
- E = Modulus of Elasticity
- t = Pipe Wall Thickness, in.
- r = Mean Radius of Pipe (O.D. t)/2
- E' = Modulus of Passive Soil Resistance, psi
- H = Height of Fill Above Top of Pipe, ft.
- I = Moment of Inertia $\underline{t^3}$

Table 2

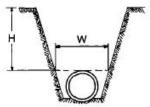
LIVE LOAD FOR BURIED FLEXIBLE PIPE (LB/LIN.FT)

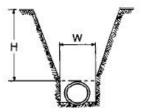
PIPE			LOADS FO		s
SIZE	2	4	6	8	10
2	309	82	38	18	16
3	442	118	56	32	21
4	574	154	72	42	27
6	837	224	106	61	40
8	1102	298	141	82	53
10	1361	371	176	101	66
12	1601	440	210	120	78

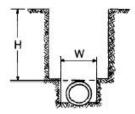
NOTE: H20 wheel load is 16,000 lb./wheel

BELOW-GROUND INSTALLATION OF THERMOPLASTIC PIPING

Table 3


SOIL LOAD AND PIPE RESISTANCE FOR FLEXIBLE THERMOPLASTIC PIPE PVC Schedule 40 and 80 Pipe


	Wc'=		ESISTAN LB./FT.)	ICE OF			100 C 100	LOAD	-
NOM.	SCHED	ULE 40	10000000	DULE 80] _н	WI		LBJFT.	
(INL)	E'=200	E'=700	E'=200	E'=700	(FT)	2 FT	3 FT	4 FT	5 F1
1-1/2	1084	1282	2809	2993	10 20 30 40	106 138 144	125 182 207 214	136 212 254 269	152 233 314 318
2	879	1130	2344	2581	10 20 30 40	132 172 180	156 227 259 267	170 265 317 337	190 291 392 398
2-1/2	1344	1647	3218	3502	10 20 30 40	160 204 216	191 273 306 323	210 321 377 408	230 362 474 482
3	1126	1500	2818	3173	10 20 30 40	196 256 268	231 336 266 394	252 392 384 497	290 429 469 596
3-1/2	1021	1453	2591	3002	10 20 30 40	223 284 300	266 380 426 450	293 446 524 568	320 490 660 670
4	969	1459	2458	2922	10 20 30 40	252 328 342	297 432 493 506	324 540 603 639	360 551 743 754
5	896	1511	2272	2861	10 20 30 40	310 395 417	370 529 592 625	407 621 730 790	448 681 918 932
6	880	1620	2469	3173	10 20 30 40	371 484 503	437 636 725 745	477 742 888 941	530 812 1090 1110
8	911	1885	2360	3290	10 20 30 40	483 630 656	569 828 945 970	621 968 1156 1225	690 1057 1423 1448
10	976	2198	2597	3764	10 20 30 40	602 785 817	710 1032 1177 1209	774 1204 1405 1527	860 131 177 180
12	1058	2515	2909	4298	10 20 30 40	714 931 969	942 1225 1397 1434	919 1429 1709 1811	102 156 210 213


NOTE 1: Figures are calculated from minimum soil resistance values (E' = 200 psi for uncompacted sandy clay loam) and compacted soil (E' = 700 for side-fill that is compacted to 90% or more of Proctor Density for distance of two pipe diameters on each side of the pipe). If Wc' is less than Wc at a given trench depth and width, then soil compaction will be necessary.

NOTE 2: These are soil loads only and do not include live loads.

Note: H = Height of fill above top of pipe, ft. W = Trench width at top of pipe, ft.

HEAVY TRAFFIC

When plastic pipe is installed beneath streets, railroads, or other surfaces that are subjected to heavy traffic and resulting shock and vibration, it should be run within a protective metal or concrete casing.

HYDROSTATIC PRESSURE TESTING

Plastic pipe is not designed to provide structural strength beyond sustaining internal pressures up to its designed hydrostatic pressure rating and normal soil loads. Anchors, valves, and other connections must be independently supported to prevent added shearing and bending stresses on the pipe.

RISERS

The above piping design rule applies also where pipe is brought out of the ground. Above-ground valves or other connections must be supported independently. If pipe is exposed to external damage, it should be protected with a separate, rigidly supported metal pipe sleeve at the danger areas. Thermoplastic pipe should not be brought above ground where it is exposed to high temperatures. Elevated temperatures can lower the pipes pressure rating below design levels.

LOCATING BURIED PIPE

The location of plastic pipelines should be accurately recorded at the time of installation. Since pipe is a non-conductor, it does not respond to the electronic devices normally used to locate metal pipelines. However, a copper or galvanized wire can be spiraled around, taped to, or laid alongside or just above the pipe during installation to permit the use of a locating device, or use marker tape.

NOTE: For additional information see ASTM D-2774, "Underground Installation of Thermoplastic Pressure Piping."

TESTING THERMOPLASTIC PIPING SYSTEMS

We strongly recommend that all plastic piping systems be hydrostatically tested as described below before being put into service. Water is normally used as the test medium. Note: Do not pressure test with compressed air or gas! Severe damage or bodily injury can result.

The water is introduced through a pipe of 1-inch diameter or smaller at the lowest point in the system. An air relief valve should be provided at the highest point in the system to bleed off any air that is present.

The piping system should gradually be brought up to the desired pressure rating using a pressure bypass valve to assure against over pressurization. The test pressure should in no event exceed the rated operating pressure of the lowest rated component in the system such as a 150-pound flange.

INITIAL LOW-PRESSURE TEST

The initial low-pressure hydrostatic test should be applied to the system after shallow back-filling which leaves joints exposed. Shallow back-filling eliminates expansion/ contraction problems. The test should last long enough to deter mine that there are no minute leaks anywhere in the system.

PRESSURE GAUGE METHOD

Where time is not a critical factor, the reading of a regular pressure gauge over a period of several hours will reveal any small leaks. If the gauge indicates leakage, that entire run of piping must then be visually inspected - paying special attention to the joints - to locate the source of the leak.

VISUAL INSPECTION METHOD

After the line is pressurized, it can be visually inspected for leaks without waiting for the pressure gauge to reveal the presence or absence of a pressure drop. Even though no leaks are found during the initial inspection, however, it is recommended that the pressure be maintained for a reasonable length of time. Checking the gauge several times during this period will reveal any slow developing leaks.

LOCATE ALL LEAKS

Even though a leak has been found and the pipe or joint has been repaired, the low-pressure test should be continued until there is a reasonable certainty that no other leaks are present. Locating and repairing leaks is very much more difficult and expensive after the piping system has been buried. Joints should be exposed during testing.

HIGH-PRESSURE TESTING

Following the successful completion of the low-pressure test, the system should be high-pressure tested for at least 12 hours. The run of pipe should be more heavily backfilled to prevent movement of the line under pressure. Since any leaks that may develop probably will occur at the fitting joints, these should be left uncovered.

Solvent-cemented piping systems must be fully cured before pressure testing. For cure times, refer to the solvent cementing instruction tables on page 43.

TEST PRESSURE

The test pressure applied should not exceed: (a) the designed maximum operating pressure, (b) the designed pressure rating of the pipe, (c) the designed pressure rating of any system component, whichever is lowest.

SAFETY PRECAUTIONS

Do not test with fluid velocities exceeding 5 ft./sec. since excessive water hammer could damage the system. (2) Do not allow any personnel not actually working on the high-pressure test in the area, in case of a pipe or joint rupture.
 (3) Do not test with air or gas.

TRANSITION FROM PLASTIC TO OTHER MATERIALS

Transitions from plastic piping to metal piping may be made with flanges, threaded fittings, or unions. Flanged connections are limited to 150 psi, and threaded connections are limited to 50% of the rated pressure of the pipe.

NOTE: When tying into a threaded metal piping system, it is recommended that a plastic male thread be joined to a metal female thread. Since the two materials have different coefficients of expansion, the male plastic fitting will actually become tighter within the female metal fitting when expansion occurs.

DO NOT TEST WITH AIR OR COMPRESSED GAS.

INSTALLATION OF THERMOPLASTIC PIPING SYSTEMS HANDLING & STORAGE OF PLASTIC PIPE

PVC and CPVC are strong, lightweight materials, about one fifth the weight of steel or cast iron. Piping made of this material is easily handled and, as a result, there is a tendency for them to be thrown about on the job site. Care should be taken in handling and storage to prevent damage to the pipe.

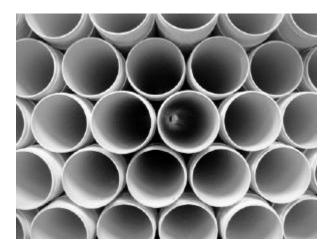
PVC and CPVC pipe should be given adequate support at all times. It should not be stacked in large piles, especially in warm temperature conditions, as bottom pipe may become distorted and joining will become difficult.

For long-term storage, pipe racks should be used, providing continuous support along the length. If this is not possible, timber supports of at least 3" bearing width, at spacings not greater than 3' centers, should be placed beneath the piping. If the stacks are rectangular, twice the spacing at the sides is required. Pipe should not be stored more than seven layers high in racks. If different classes of pipe are kept in the same rack, pipe with the thickest walls should always be at the bottom. Sharp corners on metal racks should be avoided.

For temporary storage in the field when racks are not provided, care should be taken that the ground is level and free of sharp objects (i.e. loose stones, etc.). Pipe should be stacked to reduce movement, but should not exceed three to four layers high.

The above recommendations are for a temperature of approximately 80°F. Stack heights should be reduced if higher temperatures are encountered, or if pipe is nested (i.e. pipe stored inside pipe of a larger diameter). Reduction in height should be proportional to the total weight of the nested pipe, compared with the weight of pipe normally contained in such racks. Since the soundness of any joint depends on the condition of the pipe end, care should be taken in transit, handling and storage to avoid damage to these ends.

The impact resistance and flexibility of PVC and especially CPVC pipe are reduced by lower temperature conditions. The impact strength for both types of piping materials will decrease as temperatures approach 32°F (0°C) and below. Care should be taken when unloading and handling pipe in cold weather. Dropping pipe from a truck or forklift will cause damage. Methods and techniques normally used in warm weather may not be acceptable at the lower temperature range.


When loading pipe onto vehicles, care should be taken to avoid contact with any sharp corners (i.e. angle irons, nail heads, etc.), as the pipe may be damaged.

While in transit, pipe should be well secured and supported over the entire length and should never project unsecured from the back of a trailer.

Pipe may be off-loaded from vehicles by rolling them gently down timbers, ensuring that they do not fall onto one another or onto a hard, uneven surface.

INSPECTION

Before installation, all lengths of pipe and fittings should be thoroughly inspected for cuts, scratches, gouges, buckling, and any other imperfections which may have been imparted to the pipe during shipping, unloading, storing, and stringing.

INSTALLATION OF THERMOPLASTIC PIPING SYSTEMS JOINING TECHNIQUES

There are six recommended methods of joining thermoplastic pipe and fittings, each with its own advantages and limitations:

SOLVENT CEMENTING

The most widely used method in Schedule 40 PVC, Schedule 80 PVC and CPVC piping systems as described in ASTM D-2855-93. The O.D. of the pipe and the I.D. of the fitting are primed, coated with special cement and joined together, as described in detail below. Knowledge of the principles of solvent cementing is essential to a good job. These are discussed in the Solvent Welding Instructions Section. **NOTE:** The single most significant cause of improperly or failed solvent cement joints is lack of solvent penetration or inadequate primer application.

THREADING

Schedule 80 PVC, CPVC, PVDF, and PP can be threaded with special pipe dyes for mating with Schedule 80 fittings provided with threaded connections. Since this method makes the piping system easy to disassemble, repair, and test, it is often employed on temporary or take-down piping systems, as well as systems joining dissimilar materials. However, threaded pipe must be derated by 50 percent from solvent-cemented systems. (Threaded joints are not recommended for PP pressure applications.)

FLANGES

Flanges are available for joining all thermoplastic piping systems. They can be joined to the piping either with solventcemented or threaded connections. Flanging offers the same general advantages as threading and consequently is often employed in piping systems that must frequently be dismantled. The technique is limited to **150 psi working pressure.**

BUTT FUSION

This technique us used to connect all sizes of Polypropylene (Proline), PVDF (Super Proline) and large diameter Fuseal. Butt fusion is an easy, efficient fusion method especially in larger diameters.

SOCKET FUSION

This technique is used to assemble PVDF and polypropylene pipe and fittings for high-temperature, corrosive-service applications. (See each material Design Data section for recommended joining technique.)

FUSEAL HEAT FUSION

R & G Sloane's Fuseal is a patented method of electrically fusing pipe and fitting into a single homo-genous unit. This advanced technique is used for GF Fuseal polypropylene and PVDF corrosive waste-handling systems.

FUSEAL MECHANICAL JOINT

Mechanical Joint polypropylene drainage system is used extensively for accessible smaller sized piping areas. The system, as the name implies, is a mechanical sealed joint that consists of a seal-ring, grab-ring, and nut. It is quick and easy to install and can be disconnected just as easily. You will find it most suitable for under sink and under counter piping.

WARNING

- AIR/GAS
- NEVER use compressed air or gas in PVC/CPVC/PP/PVDF pipe and fittings.
 NEVER test PVC/CPVC/PP/PVDF pipe and fittings with compressed air or
- gas, or air-over-water boosters.
- ONLY use PVC/CPVC/PP/PVDF pipe for water and approved chemicals.

Use of compressed air or gas in PVC/CPVC/PP/PVDF pipe and fittings can result in explosive failures and cause severe injury or death.

BASIC PRINCIPLES OF SOLVENT CEMENTING

To make consistently good joints the following should be clearly understood:

- I. The joining surfaces must be softened and made semi-fluid.
- 2. Sufficient cement must be applied to fill the gap between pipe and fitting.
- 3. Assembly of pipe and fittings must be made while the surfaces are still wet and fluid.
- 4. Joint strength develops as the cement dries. In the tight part of the joint the surfaces will tend to fuse together, in the loose part the cement will bond to both surfaces.

Penetrating and softening can be achieved by the use of both primer and cement. A suitable primer will usually penetrate and soften the surfaces more quickly than the cement alone. Additionally, the use of a primer can provide a safety factor for the installer, for he can know, under various temperature conditions, when he has achieved sufficient softening. For example, in cold weather more time and additional applications are required.

PRIMERS AND CEMENTS

Primer

It is recommended that a high quality primer be used to prepare the surfaces of pipe and fittings for solvent welding. Do not use water, rags, gasoline, or any other substitutes for cleaning PVC or CPVC surfaces. A chemical cleaner such as MEK may be used.

Cement

Make sure the solvent cement used is suitable for the type and size of the pipes being installed. PVC cement must be used with PVC pipe and fittings. CPVC cement must be used with CPVC pipe and fittings. Also, cement with the proper viscosity for the type and size of pipe, must be used. Contact the supplier of the cement if there are any questions of the suitability of the cement for the intended application.

Solvent cements are formulated to be used "as received" in original containers. Adding of thinners to change viscosity is not recommended. If the cement is found to be jelly-like and is not free-flowing, it should not be used. Containers should be kept covered when not in actual use.

Solvent cements should be stored at temperatures between 40° F and 110° F and away from heat or open flame. The cements should be used within one year of the date stamped on the container. Stocks should be constantly rotated to prevent buildup of old cement inventories, If new cement is subjected to freezing it may become extremely thick or gelled. This cement can be placed in a warm area where, after a period of time, it will return to its original, usable condition. But such is not the case when gellation has taken place because of actual solvent loss; for example, when container was left open too long during use or not sealed properly after use. Cement in this condition has lost its formulation and should be discarded,

Solvent cements and primers are extremely flammable and should not be used or stored near heat or open flame. They should be used only with adequate ventilation. In confined or partially enclosed areas, a ventilating device should be used to remove vapors and minimize their inhalation. Containers should be kept tightly closed when not in use and covered as much as possible when in use. Avoid frequent contact with the skin. In case of eye contact, flush repeatedly with water. Keep out of reach of children.

Applicators

To properly apply the primer and cement, the correct size and type of applicator must be used. There are three basic types of applicators:

- **Daubers** should only be used on pipe sizes 2" and below, and should have a width equal to 1/2 the diameter of the pipe.
- **Brushes** can be used on any diameter pipe, should always have natural bristles and should have a width equal to at least 1/2 the diameter of tile pipe.
- **Rollers** can be used on 4" and larger diameter pipe and should have a length equal to at least 1/2 the diameter of the pipe.

Nominal Pipe		Applicator Type	e
Size (in.)	Dauber	Brush Width (in.)	Roller Length (in.)
1/4	Α	1/2	NR
3/8	Α	1/2	NR
1/2	Α	1/2	NR
3/4	Α	1	NR
1	Α	1	NR
11/4	A	1	NR
11/2	Α	1 - 11/2	NR
2	A	1 - 1 ¹ /2	NR
21/2	NR	11/2 - 2	NR
3	NR	1 ¹ /2 - 2 ¹ /2	NR
4	NR	2-3	3
5	NR	3 - 5	3
6	NR	3 - 5	3
8	NR	4 - 6	7
10	NR	6 - 8	7
12	NR	6 - 8	7
14	NR	7 - 8	7
16	NR	8+	8

The table below shows the recommended applicator sizes Table 1

A = Acceptable

NR = Not Recommended

3. Deburring and Chamfering

MAKING THE JOINTS

1. Preparation

Before starting to make any joints, the pipe and fittings should be visually inspected for any damage or defects. The fittings should be exposed to the same temperature conditions as the pipe, for at least one hour prior to installation, so that the pipe and fittings are basically at the same temperature when joined.

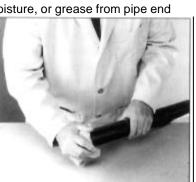
2. Cutting

Cut pipe square using a miter box or a plastic pipe cutting tool which DOES NOT flare up diameter at end of pipe.

4. Cleaning

plastic pipe deburring tool.

of the pipe 10°-


15° as shown to the right.

Chamfer (bevel) the end

Remove any dirt, moisture, or grease from pipe end

Remove all burrs from end of pipe with a knife, file, or

and fitting sockets with a clean drv rag. A chemical cleaner must be used if the wiping fails to clean the surfaces.

5. Dry Fitting

Check dry fit of pipe and fitting by inserting pipe into fitting. With light pressure, pipe should easily go at

Using the correct applicator (as shown in chart), apply

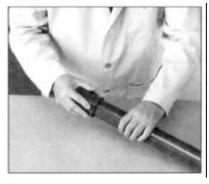
primer freely to fitting socket, keeping the surface and

applicator wet until the surface has been softened. This

will usually require 5-15 seconds. More time is needed

for hard surfaces and in cold weather conditions. Redip

the applicator in primer as required. When the surface


least 1/3 of the way in. If it bottoms, it should be snug.

6. Primina

is primed.

remove any

puddles of primer from the socket.

7. Cementing

While the surfaces of the pipe and fitting are still wet with primer, immediately apply a full even layer of

cement to the pipe using the proper size applicator shown in chart) equal to the depth of the socket.

Apply a medium layer of cement to the fitting socket. Do not let the cement puddle. Also, when joining

belled-end pipe, do not coat beyond the bell depth or allow the cement to run down the inside of the pipe.

Apply a second full even layer of cement to the pipe. Assemble parts QUICKLY! Parts must be assembled while cement is still fluid. If assembly is interrupted, recoat parts and assemble. Push pipe FULLY into fitting, using a turning motion, if possible,

of 1/8 to 1/4 turn, until it bottoms. Hold them together for 15 -30 seconds to offset tendency of pipe to move out of fittings. With a rag, wipe off excess bead of cement from juncture of pipe and fitting.

Note: For pipe sizes 6" and larger, two people will be required, a mechanical forcing device should be used, and the joint should be held together for up to 3 minutes.

A second application in the

it has unusually hard surfaces. These hard surfaces are often found in

bellied-ends and in fittings made from pipe stock.

Apply the primer to the end of the pipe equal to the depth of the fitting socket. Application should be made in the same manner as was done on the fitting socket.

JOINT CURING

The joint should not be disturbed until it has initially set. The table below shows the recommended initial set times.

Temperature Range	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pipe Sizes 11/2" to 3"		Pipe Sizes 10" to 16"
60° - 100° F	15 min	30 min	1 hr	2 hr
40° - 60° F	1 hr	2 hr	4 hr	8 hr
0° - 40° F	3 hr	6 hr	12 hr	24 hr

The joint should not be pressure tested until it has cured. The exact curing time varies with temperature, humidity, and pipe size. The following table shows suggested curing times.

Table 3

Recommended Curing Time Before Pressure Testing

Table 2

RELATIVE HUMIDITY 60% or Less*		E TIME s ½" to 1¼"	20030	E TIME s 1½" to 3"		E TIME es 4" to 8"	CURE TIME Pipe Sizes 10" to 16"
Temperature Range During Assembly and Cure Periods	Up to 180 psi	Above 180 to 370 psi	Up to 180 psi	Above 180 to 315 psi	Up to 180 psi	Above 180 to 315 psi	Up to 100 psi
60° - 100° F 40° - 60° F 0° - 40° F	1 hr 2 hr 8 hr	6 hr 12 hr 48 hr	2 hr 4 hr 16 hr	12 hr 24 hr 96 hr	6 hr 12 hr 48 hr	24 hr 48 hr 8 days	24 hr 48 hr 8 days

*For relative humidity above 60%, allow 50% more cure time.

The above data are based on laboratory tests and are intended as guidelines. For more specific information, contact should be made with the cement manufacturer.

Pressure Testing

- 1. Prior to testing, safety precautions should be instituted to protect personnel and property in case of test failure,
- 2. Conduct pressure testing with water. DO NOT USE AIR OR OTHER GASES for pressure testing.
- 3. The piping system should be adequately anchored to limit movement. The system may require thrust blocking at changes of direction.
- 4. The piping system should be slowly filled with water, taking care to prevent surge and air entrapment. The flow velocity should not exceed 1 foot per second (see charts on pages 24-29).
- 5. All trapped air must be slowly released. Vents must be provided at all high points of the piping system. All valves and air relief mechanisms should be opened so that the air can be vented while the system is being filled. Trapped air is extremely dangerous and it must be slowly and completely vented prior to testing.
- 6. The piping system can be pressurized to 125% of its designed working pressure. However, care must be taken to ensure the pressure does not exceed the working pressure of the lowest rated component in the system (valves, unions, flanges, threaded parts, etc.)
- 7. The pressure test should not exceed one hour. Any leaking joints or pipe must be cut out and replaced and the line recharged and retested using the same procedure.

TIPS TO FOLLOW IN SOLVENT CEMENTING DURING COLD WEATHER:

- 1. Prefabricate as much of the system as is possible in a heated working area.
- 2. Store cements and primers in a warmer area when not in use and make sure they remain fluid.
- 3. Take special care to remove moisture, including ice and snow.
- 4. Use extra primer to soften the joining surfaces before applying cement.
- 5. Allow a longer initial set and cure period before the joint is moved or the system is tested.
- 6. Read and follow all of our directions carefully before installation. Regular cements are formulated to have well-balanced drying characteristics and to have good stability in sub-freezing temperatures. Some manufacturers offer special cements for cold weather because their regular cements do not have that same stability.

For all practical purposes, good solvent cemented joints can be made in very cold conditions with our existing products, providing proper care and a little common sense are used.

P-70 PRIMER FOR PVC A		ICAL DATA		
BOILING POINT ("F) Based on 1st boiling Comp. THF.	151°F	SPECIFIC GRAVITY (H20=1)	0.870 :	60.010
VAPOR PRESSURE (mm Hg.) THF (g. 25	190	PERCENT, VOLATILE BY VOLUME (%)	100	256
VAPOR DENSITY (AIR = 1) APPROX	2.49	EVAPORATION RATE (BLIAC = 1) APPROX	5.5	- 8
SOLUBILITY IN WATER 100%		an a	0	
APPEARANCE AND COOR - Purple Color	- Ether	nal Odor		
FIRE AND EXP	LOS	ION HAZARD DATA	S	
FLASH POINT (Method used) (T.C.C.) 6"F	FLA	WMABLE LIMITS	Left 1.8	Liser 11.8
EXTINGUISHING MEDIA Dry chemical Carbondioxide - Foam - Anau	*Perple	a K* National Aero-O-Foam		
SPECIAL FIREFIGHTING PROCEDURES Close or confined quarters require self cont mask or airline masks.	ained b	reathing apparatus. Positive press	ure hase	
UNUSUAL FIRE AND EXPLOSION HAZAF Fire hazard because of low flash point, high		ty and heavy vapor.		

BOILING POINT ("F) Based on 1st boiling Comp. THF.	151°F	SPECIFIC GRAVITY (H20=1)	0.920	60.02
VAPOR PRESSURE (mm Hg.) THF @ 25°C	190	PERCENT, VOLATILE BY VOLUME (%) APPROX	85 to	90%
VAPOR DENSITY (AIR = 1) APPROX	2.40	EVAPORATION RATE (BLIAC = 1) APPROX	5.51	8 0
FIRE AND EXP	LOS	ON HAZARD DATA	£	
FLASH POINT (Method used)	FLA	ION HAZARD DATA	Left 1.8	Liser 1.8
	FLA	WMABLE LIMITS		

PHYSICAL DATA

BOILING POINT ("F) Based on 1st boilin Comp. THF.	9 151°F	SPECIFIC GRAVITY (H20=1)	0.958† 0.008
WAPOR PRESSURE (mm Hg.) THF @ 25°C	190	PERCENT, VOLATILE BY VOLUME (%) APPROX	90%
WAPOR DENSITY (AIR = 1) APPROX.	2.49	EVAPORATION RATE (BUAC = 1) APPROX	5.0 to 8
SOLUBILITY IN WATER Solvent portion P	WC reain	& filler - Precipalete	
APPEARANCE AND ODOR - Gary color	, medium	syrupy liquid - Etheral Odor	
FIRE AND EX	PLOS	ION HAZARD DATA	
FLASH POINT (Method used) (T.O.C.) 81		WIMABLE LIMITS % in Air	Left Used 2.0 11.8
EXTINGUISHING MEDIA Dry chemical, Carbondiceide - Foem - An	sul*Purp	le K" National Aero-O-Foam	
SPECIAL FIREFIGHTING PROCEDURES Close or confined quarters require self on mask or airline masks		reathing apparatus. Positive press	ure hose
UNUSUAL FIRE AND EXPLOSION HAZA Fire hazard because of low flash point, his		ly and heavy vapor	
PH	YSIC	AL DATA	
719 GRAY CEMENT FOR	2-07-07-1 1		
BOILING POINT ("F) Based on 1st boilin Comp. THF.	g 151°F	SPECIFIC GRAVITY (H_0=1)	0.009 ±0.004
WAPOR PRESSURE (mm Hg.) THF @	190	PERCENT, VOLATILE BY VOLUME (N)	80%
WAPOR DENSITY (AIR = 1) APPROX.	2.49	EVAPORATION RATE (BLAC = 1) APPORX. Initial	5 - 8
SOLUBILITY IN WATER Solvent portion PVC reain &	filler - Pre	cipates	
APPEARANCE AND ODOR - One other	neste la	e Effectal Orbor	
APPEARANCE AND ODOR - Only color.	0.000		
	PLOS	ION HAZARD DATA	
	PLOS		
FIRE AND EX	PLOS	ION HAZARD DATA	
FIRE AND EX FLASH POINT (Method used) (T.C.C.)8/F EXTINGUISHING MEDIA	FLOS FL	ION HAZARD DATA	2 11.8
FIRE AND EXI FLASH PCINT (Method Load) (T.C.C.)8/F EXTINGUISHING MEDIA Garbondooide, Dry chamicals SPECIAL FIREPORTING PROCEDURE Diase or confined quarters require set-or Diase or confined quarters require set-or	PLOS FL S antained t	ION HAZARD DATA	2 11.8
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)8/F EXTINGUISHING MEDIA Carbondoxide, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Dises or confined quarters require self-cor- mask or athree masks. LINLISUAL FIRE AND EXPLOSION HAZ	PLOS FL S antained t	ION HAZARD DATA	2 11.8
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)8/F EXTINGUISHING MEDIA Carbondoside, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Close or confined quarters require self-or mask or airline masks LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low fliash point, h	PLOS FL S ortained b ARDS igh volation	ION HAZARD DATA AMMABLE LIMITS steathing apparetus. Positive press ity and heavy vapor: AL DATA	2 11.8
FIRE AND EXI FLASH POINT (Method Lead) (T.C.C.)9/F EXTINGUISHING MEDIA Carbondoxida, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Dices or confined quarters require self-co- mak or athree masks. LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h	PLOS FL S ortained b ARDS igh volation	ION HAZARD DATA AMMABLE LIMITS steathing apparetus. Positive press ity and heavy vapor: AL DATA	2 11.8
FIRE AND EXI FLASH POINT (Method used) (C.C.C.)9/F EXTINGUISHING MEDIA Garbondoods, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Close or confined quarters require set-or mask or airline masks. LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH 714 GRAY CEMENT FOR BOLING POINT (F) The lowest boling point	PLOS FL S sentained I ARDS sigh volatil YSIC/ CPV(ION HAZARD DATA AMMABLE LIMITS preathing apparetux. Positive press ity and heavy vapor. AL DATA	2 11.8
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)8/F EXTINGUISHING MEDIA Garbondosida, Dry chemicala SPECIAL FIREFIGHTING PROCEDURE Close or confined quarters require self-or mask or airline masks LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low fliash point, h PH 714 GRAY CEMENT FOR BOILING POINT (°F) The lowest boling point WAPOR PRESSURE (mm Hg.)	PLOS FL Sontained I ARDS igh volati YSIC/ CPV(151*	ION HAZARD DATA AMMABLE LINITS sreathing apparetus. Positive press lay and heavy vapor. AL DATA SPECIFIC GRAVITY (H ₂ 0=1) PERCENT, VOLATLE	2 11.8
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)8/F EXTINGUISHING MEDIA Carbondooida, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Close or confined quarters require self-or mask or airline masks. LINUSUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH 714 GRAY CEMENT FOR BOLLING POINT ("F) The lowest beling point WAPOR PRESSURE (ymm Hg.) THF @ 25	PLOS FLJ Sontained I ARDS igh volation YSIC/ CPV(151° 190 2.49	ION HAZARD DATA AMMABLE LIMITS creathing apparetus. Positive press ity and heavy vapor: AL DATA SPECIFIC GRAVITY (H ₂ 0=1) PERCENT, VOLATILE BY VOLUME (%) EVAPORATION RATE	2 118 ure hose 85-90%
FIRE AND EXI FLASH POINT (Method used) (T.C.C.)S/F EXTINGUISHING MEDIA Carbondsoids, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Disse or confined quarters require self-or mask or airline masks. LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH T14 GRAY CEMENT FOR BOILING POINT ("F) The lowest being point WAPOR PRESSURE (mst Hg.) THF @ 25 WAPOR DENSITY (AIR = 1) APPROX.	PLOS FL S S S S S S S S S S S S S S S S S S	ION HAZARD DATA AMMABLE LIMITS preathing apparetux. Positive press ity and heavy vapor: AL DATA C SPECIFIC GRAVITY (H ₂ 0=1) PERCENT, VOLATILE BY VOLA	2 118 ure hose 85-90%
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)9/F EXTINGUISHING MEDIA Garbondoods, Dry chemicals SPECIAL FIREFAND TIMO PROCEDURE Close or confined quarbars require set- mask or airline masks. LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH 714 GRAY CEMENT FOR BOLLING POINT (*F) That lowest beling point WAPOR PRESSURE (mm Hg.) THF @ 25 WAPOR DENSITY (AIR = 1) APPROX. SOLUBILITY IN WATER Reain precipater APPEARANCE AND ODOR -Gray color,	FLUSS FLUSS	ION HAZARD DATA AMMABLE LIMITS preathing apparetux. Positive press ity and heavy vapor: AL DATA C SPECIFIC GRAVITY (H ₂ 0=1) PERCENT, VOLATILE BY VOLA	2 118 ure hose 85-90%
FIRE AND EXI FLASH POINT (Method Load) (T.C.C.)9/F EXTINGUISHING MEDIA Garbondoods, Dry chemicals SPECIAL FIREFAND TIMO PROCEDURE Close or confined quarbars require set- mask or airline masks. LINLISUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH 714 GRAY CEMENT FOR BOLLING POINT (*F) That lowest beling point WAPOR PRESSURE (mm Hg.) THF @ 25 WAPOR DENSITY (AIR = 1) APPROX. SOLUBILITY IN WATER Reain precipater APPEARANCE AND ODOR -Gray color,	PLOS FU FU ARDS igh volation (CPV) 151° 190 2.49 9 Medium 2 2.49 9 5 FU S	ION HAZARD DATA AMMABLE LIMITB preathing apparetus. Positive press ity and heavy vapor: AL DATA SPECIFIC GRAVITY (H ₂ 0=1) PERCENT, VOLATLE BY VOLUME (N) EVAPORATION RATE (BLIAC = 1) Instelly synupy liquid - Ethenal Odor	2 118 ure hose 85-90%
FIRE AND EXI FLASH POINT (Method used) (T.C.C.)9/F EXTINGUISHING MEDIA Garbondsoids, Dry chemicals SPECIAL FIREFIGHTING PROCEDURE Disse or confined quarbars require self-or mask or airline masks. LINUSUAL FIRE AND EXPLOSION HAZ Fire hazard because of low flash point, h PH 714 GRAY CEMENT FOR BOLING POINT (PF) That lowest boling point WAPOR PREBSURE (mms Hg.) THF @ 25 WAPOR DENSITY (AR = 1) APPROX. SOLUBILITY IN WATER Resin precipate APPEARANCE AND ODOR -Gray color, FLASH POINT (Method used) (T.O.C.) 87 EXTINGUISHING MEDIA	FLUSS FLUSS	ION HAZARD DATA AMMABLE LIMITS preathing apparetus. Positive press ity and heavy vapor: AL DATA SPECIFIC ORAWITY (H ₂ 0=1) PERCENT, VOLATILE BY VOLUTILE BY VOLUTILE BY VOLUTILE BY VOLATILE BY VOLUTILE BY VOLUTINE BY BY B	2 118 ure hase 85-90% 8.0
FIRE AND EXI FLASH POINT (Method used) (T.C.C.)SF EXTINGUISHING MEDIA Cathoridoxida, Dry chemicala SPECIAL INSERFLOHTING PROCEDURE Didee or confined quarters require self-co- maak or at/line maaka LINLISUAL FIRE AND EXPLOSION INAZ Fire hazard because of low fleah point, h PH 714 GRAY CEMENT FOR BOLLING POINT (°F) The Ideeat bolling point WAPOR PRESSURE (methig.) THF @ 25 WAPOR DENSITY (AIR = 1) APPROX. SOLUBILITY IN WATER Reain precipitate APPEARANCE AND ODOR -Gray color, FIRE AND EXI FLASH POINT (Wethod used) (T.O.C.) SY	PLOS FLJ FL S ortfarred I ARDS Sigh volution 151° 190 2.49 Medium a PLOS s FL saud "Purps	ION HAZARD DATA AMMABLE LINITS reaching apparetus. Positive press isy and heavy vapor: AL DATA SPECIFIC GRAWITY (H ₂ O=1) PERCENT, VOLATILE BY VOLUME (%) EWAPORATION RATE (BLAC = 1) Initially INITIAL DATA INITIAL ETHERING COLOR ION HAZARD DATA MMABLE LINITS de K* National Aero-O-Foam	2 118 ure hase 85-90% 8.0 Left Use 1.8% 11.8%

Low VOC 724 cement for hypochlorite service weld-on 724 CPVC low VOC cement is a gray, medium bodied, fast-setting solvent cement used for joining CPVC industrial piping through 12" diameter and is specially formulated for services that include caustics and hypochlorites.

THREADING INSTRUCTIONS PVC AND CPVC PIPE

Only Schedule 80 Pvc and CPVC pipe can be safely threaded. Schedule 40 PVC and CPVC pipe and PVC SDR pipe should **not** be threaded.

Due to the reduction in wall thickness at the point of threading, the pressure rating of the pipe is reduced by 50%. Therefore, threaded connections are not recommended for high pressure applications.

THREADING PROCEDURE

1. Cutting

The pipe must be cut square using a power saw, a miter box, or a plastic pipe cutter. Burrs should be removed using a knife or deburring tool.

2. Threading

Threads can be cut using either hand held or power threading equipment. The cutting dies should be clean, sharp, and in good condition. Special dies for cutting plastic pipe are available and are recommended.

When using a hand threader, the dies should have a 5° to 10° negative front rake. When using a power threader, the dies should have a 5° negative front rake and the die heads should be self-opening. A slight chamfer to lead the dies will speed production. However, the dies should not be driven at high speeds or with heavy pressure.

When using a hand held threader, the pipe should be held in a pipe vise. To prevent crushing or scoring of the pipe, a protective wrap such as emery paper, canvas, rubber, or a light metal sleeve should be used.

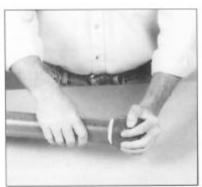
Insert a tapered plug into the end of the pipe to be threaded. This plug will provide additional support and prevent distortion of the pipe in the threading area.

It is recommended that a cutting lubricant, such as a soap and water solution or a water soluble machine oil, be used during the threading operation. Also, clearing the cuttings from the die is highly recommended.

Do not over-thread the pipe. The diagram and table on the following page show the ASTM F 1498 dimensions for American Standard Taper Pipe Threads. Periodically check the threads with a ring gauge to ensure that the threads are accurate. The tolerance is $\pm 11/2$ turns.

3. Installation

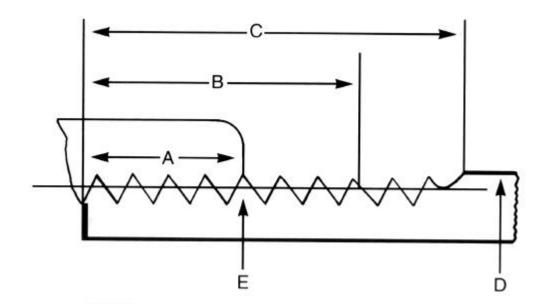
Brush the threads clean and wrap PTFE thread tape around the entire length of the threads.⁽¹⁾ Start with the second full thread and wrap in the direction of the threads to prevent unraveling when the fitting is tightened onto the pipe. Overlap each


wrap by one half the width of the tape.

⁽¹⁾ Pipe joint compounds, pastes, or other thread lubricants are **not** recommended for use with PVC and CPVC pipe.

Thread the fitting onto the pipe and hand tighten. Further tighten the fitting (one to two turns past hand tight) by using a

strap wrench only. Avoid over tightening as this may cause thread or fitting damage. When combining plastic and metallic threaded systems, it is recommended that plastic male threads be screwed into metallic female threads rather than metallic male threads into plastic female threads.


THREADING INSTRUCTIONS PVC - CPVC - PP - PVDF

SCOPE

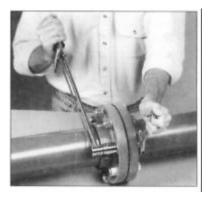
The procedure presented herein covers threading of all IPS Schedule 80 or heavier thermoplastic pipe. The threads are National Pipe Threads (NPT) which are cut to the dimensions outlined in ANSI B2.1 and presented below:

DO NOT THREAD SCHEDULE 40 PIPE

Taper Pipe Thread Dimensions Diagram

Table 4

PI	PE			THE	READS		
Nominal Size In Inches	Outside Diameter In Inches (D)	Number of Threads Per Inch	Normal Engagement By Hand In Inches (A)	Length of Effective Thread In Inches (B)	Total Length: End of Pipe to Vanish Point In Inches (C)	Pitch Diameter at end of Internal Thread In Inches (E)	Maximum Depth of Thread In Inches
1/4	.540	18	.228	.4018	.5946	.49163	.04444
3/8	.675	18	.240	.4078	.6006	.62701	.04444
1/2	.840	14	.320	.5337	.7815	.77843	.05714
3/4	1.050	14	.339	.5457	.7935	.98887	.05714
1	1.315	111/2	.400	.6828	.9845	1.23863	.06957
11/4	1.660	111/2	.420	.7068	1.0085	1.58338	.06957
11/2	1.900	113/2	.420	.7235	1.0252	1.82234	.06957
2	2.375	111/2	.436	.7565	1.0582	2.29627	.06957
2 ¹ /2	2.875	8	.682	1.1375	1.5712	2.76216	.10000
3	3.500	8	.766	1.2000	1.6337	3.38850	.10000
4	4.500	8	.844	1.3000	1.7337	4.38713	.10000

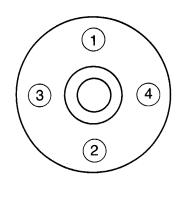


FLANGING PVC AND CPVC PIPE

For systems where dismantling is required, flanging is a convenient joining method. It is also an easy way to join plastic and metallic systems.

5. Use a torque wrench to tighten the bolts to the torque values shown below.

INSTALLATION


- 1. Join the flange to the pipe using the procedures shown in the solvent cementing or threading sections (see pages 43-49).
- Use a full faced elastomeric gasket which is resistant to the chemicals being conveyed in the piping system. A gasket 1/8" thick with a Durometer, scale "A", hardness of 55 -80 is normally satisfactory.
- 3. Align the flanges and gasket by inserting all of the bolts through the mating flange bolt holes. Be sure to use properly sized flat washers under all bolt heads and nuts.
- 4. Sequentially tighten the bolts corresponding to the patterns shown below.

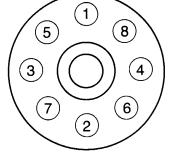
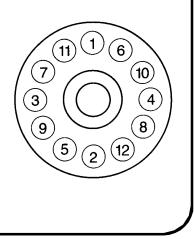

RECOMMENDED TORQUE

Table 5


Pipe Size In Inches	No. Bolt Holes	Bolt Diameter	Recommended Torque ft/lbs
1/2	4	1/2	10 - 15
3/4	4	1/2	10 - 15
1	4	1/2	10 - 15
11/4	4	1/2	10 - 15
11/2	4	1/2	10 - 15
2	4	5/8	20 - 30
21/2	4	5/8	20 - 30
3	4	5/8	20 - 30
4	8	5/8	20 - 30
6	8	3/4	33 - 50
8	8	3/4	33 - 50
10	12	7/8	53 - 75
12	12	7/8	53 - 75

FLANGED JOINTS

PRESSURE RATING

Maximum pressure for any flanged system is 150 psi. At elevated temperatures the pressure capability of a flanged system must be derated as follows:

Table 6

MAXIMUM OPERATING PRESSURE (PSI)

5.	OPER TEMPE	ATING RATURE		
(°F)	PVC*	CPVC*	PP**	PVDF
100	150	150	150	150
110	135	140	140	150
120	110	130	130	150
130	75	120	118	150
140	50	110	105	150
150	NR	100	93	140
160	NR	90	80	133
170	NR	80	70	125
180	NR	70	50	115
190	NR	60	NR	106
200	NR	50	NR	97
250	NR	NR	NR	50
280	NR	NR	NR	25

NR -Not Recommended

PVC and CPVC flanges sizes 2-1/2, 3 and 4-inch threaded must be back welded for the above pressure capability to be applicable.
 Threaded PP flanges size 1/2 through 4" as well as the 6" back weld

** Threaded PP flanges size 1/2 through 4" as well as the 6" back weld socket flange are not recommended for pressure applications (drainage only).

Z	
Sic	
ЯÄ	
N	AIN
8	OBT
R	Q
SSL	CTOR
Щ. Ш.	FAC
đ	Å

DELFAC	DI LACIONIO DI	IAIN										
Given	lb./in.²	in.H ₂ 0 (at +39.2°F)	cmH ₂ 0 (at +4*C)	In. Hg (at +32*F)	mmHg (Torr) d (at 0°C)	dyne/cm² (1µ bar)	newton/m ² (PASCAL)	kgm/cm²	bar	atm. (A _n)	19°.W.	R.H ₂ 0 (at +39.2°F)
lb./in.2	1.000	2.7680x10'	7.0308x10 [°]	2.0360	5.1715×10'	6.8948x10*	6.8948x10'	7.0306x10*	6.8947×102	6.8045x10*	1.4400×10'	2.3067
in.H ₂ 0 (at +39.2"	F) 3.6127×10'	1.0000	2.5400	7.3554x10°	1,8663	2.49808x10°	2.4908x10°	2.5399x10ª	2.4908x10°	2.4582x101	5.2022	8.3333x10 ⁴
cm H ₂ 0 (at +4 ^c C)	1.4223x10*	0.3937	1.0000	2.8958x10°	0.7355	9.8064x10 ²	9.8064x10'	9.8064x10' 9.9597x10* 9.8064x10*	9.8064x10*	9.6781×10*	2.0481	3.2808x10°
in. Hg (at +32°F)	4.9116x10*	1.3596x10'	3.4532x10'	1.0000	2.5400x10 ⁻	3.3864x10*	3.3864x10°	3.3864x10° 3.4532x10° 3.3864x10°	3.3864x10°	3.3421x10° 7.0727x10°	7.0727×10	1.1330
mm Hg (Tor (at 0°C)	1,9337x10*	5.3525x10 ⁺	1.3595	3.9370x10°	1.0000	1.3332x10°	1.3332410*	1.3595x10°	1.3332x(0° 1.3595x10° 1.3332x10° 1.3158x10°	1.3158x101	2.7845	4.4605x10 ²
dyne./cm² (1j.t bar)	1.4504x110 ⁶	4.0147×10*	1.0197×10°	2.9530x10*	7.5006x10*	1.0000	1.0000x10*	1.0197×10*	1.0000x10*	9.8692x10°	2.0886x10 [±]	3.3456x10*
newton/m ² (PASiCAL)	1.4504x10*	4.0147×10°	1.0197x10 ²	4.0147x10° 1.0197x10° 2.9530x104 7.5006x10°	7.5006x10°	1.0000x10'	1.0000	1.0197x10 ⁴	1.0000×10*	9.8692x10*	2.0885x10 ²	3.3456x10*
kgm/cm²	1.4224x10'	3.9371x10°	1.00003×10°	2.8959x10'	3.9371x10° 1.00003x10° 2.8959x10° 7.3666x10°	9.8060x10°	9.8060x10*	1.0000	9.8060x10 ⁺	9.678x10*	2.0482x10°	3.2809×10'
bar	1.4504x10'	4.0147×10°	1.0197×10'	2.9530x10*	7.5006x10 ⁴ 1.0000x10 ⁴	1.0000x10 ⁴	1.0000x10 ⁴	1.0197	1.0000	9.8692×10°	2.0885x10°	3.3456x10
atm. (A _n)	1.4696x10'	4.0679x10'	1.0333×10°	2.9921×10'	7.6000×10 ⁴	1.0133x10 ⁴	1.0133x10*	1.0332	1.0113	1.0000	2.1162x10 ⁵	3.3900×10
b./¶.²	6.9445x10°	1.9223x101	4.882x101	1.4139×10°	3.591×10*	4.7880x10'	4.7880x10 ⁴	4.8824x10*	4.7880x10*	4.7254x10*	1.0000	1.6019x10°
ft. H ₂ 0 (at +39.2°F	n. H20 (at+39.2*F) 4.3352x10*		3.0480×10'	1.2000x10' 3.0480x10' 8.826x10' 2.2419x10'	2.2419×10'	2.9690x10'	2.9890x10 ⁴	2.9890x10* 3.0479x10* 2.9890x10*	2.9690x10 ²	2.9499x10°	6.2427x10'	1.0000

DECIMAL AND MILLIMETER EQUIVALENTS OF FRACTIONS

CONVERSION CHARTS

lnc	Inches	-1111W	Inches	es	Milli-	Inc	hes	- Willie-	Inc	thes	- Willi-
Fractions	Decimals	meters	Fractions	Decimals	meters	Fractions	Decimals	meters	Fractions	Decimals	meters
1/164	.015625	397	17/64	.265625	6.747	33/64	515625	13.097	49/64	.765625	19.447
1/32	.03125	.794	9/32	.28125	7.144	17/32	53125	13.494	25/32	.78125	19.844
3/164	.0468:75	1.191	19/64	.296875	7.541	35/64	546875	13.891	51/64	.796875	20.241
1/16	.0625	1.588	5/16	.3125	7.938	9/16	.5625	14.288	13/16	.8125	20.638
5/64	.078125	1.984	21/64	.328125	8.334	37/64	578125	14.684	53/64	.828125	21.034
3/32	.09375	2.381	11/32	.34375	8.731	19/32	.59375	15.081	27/32	.83475	21.431
7/164	.1093.75	2.778	23/64	.359375	9.128	39/64	609375	15.478	55/64	.859375	21.828
1/8	.125	3.175	3/8	.375	9.525	5/8	.625	15.875	2/8	.875	22.225
9//64	.140625	3.572	25/64	.390625	9.922	41/64	640625	16.272	57/64	.890625	22.622
5/32	.15625	3.969	13/32	.40625	10.319	21/32	.65625	16.669	29/32	.90625	23.019
11/64	.1718.75	4.366	27/64	.421875	10.716	43/64	671875	17.066	59/64	.921875	23.416
3/16	.1875	4.763	7/16	,4375	11.113	11/16	.6875	17.463	15/16	.9375	23.813
13/64	.203125	5.159	29/64	.453125	11.509	45/64	703125	17.859	61/64	.953125	24.209
7/32	.21875	5.556	15/32	.46875	11.906	23/32	.71875	18.256	31/32	.96875	24.606
15//64	.23475	5.953	31/64	.484375	12.303	47/64	734375	18.653	63/64	.984375	25.003
1/4	250	6.350	1/2	500	12 700	3/4	750	19 050	-	100	25 400

CONVERSION CHARTS

Units of			Multiply un	its in left colur	nn by proper fa	actor below		
Length	in.	ft.	yd.	mile	mm	cm	m	km
1 inch	1	0.0833	0.0278	•	25.4	2.540	0.0254	•
1 foot	12	1	0.3333		304.8	30.48	0.3048	
1 yard	36	3	1		914.4	91.44	0.9144	
1 mile		5280	1760	1			1609.3	1.609
1 millimeter	0.0394	0.0033			1	0.100	0.001	
1 centimeter	0.3937	0.0328	0.0109		10	1	0.01	
1 meter	39.37	3.281	1.094		1000	100	1	0.001
1 kilometer		3281	1094	0.6214			1000	1

(1 micron = 0.001 millimeter)

Units of		Mul	tiply units in le	eft column by p	roper factor be	elow	
Weight	grain	0Z.	lb.	ton	gram	kg	metric ton
1 grain	1	•	•		0.0648	•	•
1 ounce	437.5	1	0.0625		28.35	0.0283	
1 pound	7000	16	1	0.0005	453.6	0.4536	
1 ton	3.5.5	32,000	2000	1		907.2	0.9072
1 gram	15.43	0.0353	-		1	0.001	
1 kilogram		35.27	2.205	5 - 2	1000	1	0.001
1 metric ton		35.274	2205	1.1023		1000	1

Units of	Mul	tiply units in l	eft column by p	roper factor be	elow
Density	lb./in.3	lb./ft.3	lb./gal.	g/cm ³	g/liter
1 pound/in.3	1	1728	231.0	27.68	27,680
1 pound/ft.3		1	0.1337	0.0160	16.019
1 pound/gal.	0.00433	7.481	1	0.1198	119.83
1 gram/cm ³	0.0361	62.43	8.345	1	1000.0
1 gram/liter		0.0624	0.00835	0.001	1

Units of		Mul	tiply units in I	eft column by p	roper factor be	elow	
Area	in.²	ft.²	acre	mile ²	cm ²	m²	hectare
1 inch ²	1	0.0069		•	6.452	•	•
1 foot ²	144	1	10.00		929.0	0.0929	
1 acre		43,560	1	0.0016	-	4047	0.4047
1 mile ²		· · · · ·	640	1	-		259.0
1 centimeter ²	0.1550	-			1	0.0001	
1 meter ²	1550	10.76	3 5 .	-	10,000	1	
1 hectare			2.471			10,000	1

Units of			Multiply u	nits in left colum	n by proper fa	actor below		
Volume	in.3	ft.3	yd.3	cm.3	metera	liter	U.S. gal.	Imp. gal.
1 inch ³	1			16.387		0.0164		•
1 foot ^a	1728	1	0.0370	28,317	0.0283	28.32	7.481	6.229
1 yard ³	46,656	27	1		0.7646	764.5	202.0	168.2
1 centimeter ³	0.0610	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	S D- 11	1		0.0010		•
1 meter ^a	61,023	35.31	1.308	1,000,000	1	999.97	264.2	220.0
1 liter	61.025	0.0353	1000	1000.028	0.0010	1	0.2642	0.2200
1 U.S. gallon	231	0.1337		3785.4		3.785	1	0.8327
1 Imp. gallon	277.4	0.1605		4546.1	· · ·	4.546	1.201	1

CONVERSION CHARTS

Units of			Multiply units i	n left column l	by proper facto	r below	
Pressure	lbs./in.²	lb./ft.²	Int. etc.	kg/cm²	mm Hg at 32°F	in. Hg at 32°F	ft. water at 39.2°F
1 pound/in. ²	1	144		0.0703	51.713	2.0359	2.307
1 pound/ft.2	0.00694	1	1000		0.3591	0.01414	0.01602
1 in./cm/atmosphere	14.696	2116.2	1	1.0333	760	29.921	33.90
1 kilogram/centimeter ²	14.223	2048.1	0.9678	1	735.56	28.958	32.81
1 millimeter-mercury -	0.0193	2.785	-		1	0.0394	0.0446
1 torr (torricelli)-							
1 inch mercury	0.4912	70.73	0.0334	0.0345	25.400	1	1.133
1 foot water	0.4335	62.42	-	0.0305	22.418	0.8826	1

Units of	Multiply units in left column by proper factor below								
Energy	ftIb.	BTU	g. cal.	Joule	kw-hr.	hp-hr.			
1 foot-pound	1	0.001285	0.3240	1.3556	-	-			
1 BTU	778.2	1	252.16	1054.9					
1 gram calorie	3.0860	0.003966	1	4.1833	-				
1 Int. Joule	0.7377	0.000948	0.2390	1					
1 Int. kilowatt-hour	2,655,656	3412.8	860,563	-	1	1.3412			
1 horsepower-hour	1,980,000	2544.5	641,617		0.7456	1			

Units of	Multiply units in left column by proper factor below								
Specific Pressure	Absolute Joule/g	Int. Joule/g	cal/g	Int. cal/g	BTU/ib.				
1 absolute Joule/gram	1	0.99984	0.23901	0.23885	0.42993				
1 Int. Joule/gram	1.000165	1	0.23904	0.23892	0.43000				
1 calorie/gram	4.1840	4.1833	1	0.99935	1.7988				
1 int. calorie/gram	4.1867	4.1860	1.00065	1	1.8000				
1 BTU/lb.	2.3260	2.3256	0.55592	0.55556	1				

Units of Power	Multiply units in left column by proper factor below								
(rates of energy use)	hp	watt	kw	BTU/min.	ftlb./sec.	ftIb./min.	g. cal/sec.	metric hp	
1 horsepower	1	75.7	0.7475	42.41	550	33.000	178.2	1.014	
1 watt		1	0.001	0.0569	0.7376	44.25	0.2390	0.00136	
1 kilowatt	1.3410	1000	1	56.88	737.6	44,254	239.0	1.360	
1 BTU per minute	-		-	1	12.97	778.2	4.203	0.0239	
1 metric hp	0.9863	735.5	0.7355	41.83	542.5	32.550	175.7	1	

Units of Refrigeration	Multiply units in left column by proper factor below								
	BTU (IT) /min.	BTU (IT) /hr.	kg cal/hr.	ton (U.S.) comm	ton (Brit.) comm	Frigorie/hr.			
1 ton (U.S.) comm	200	12,000	3025.9	1	0.8965	3025.9			
1 ton (Brit.) comm	223.08	13,385	3375.2	1.1154	1	3375.2			
1 frigorie/hr.	0.06609	3.9657	1	0.0003305	0.0002963	1			

NOTE: BTU is International Steam Table BTU (IT). 1 frigorie = 1 kg cal. (IT)

CONVERSION CHARTS

°F	°C	°F	°C	°F	°C	°F	°C	°F	°C
-459.4	-273	1	-17.2	61	16.1	300	149	900	482
-450	-268	2	-16.7	62	16.7	310	154	910	488
-440	-262	3	-16.1	63	17.2	320	160	920	493
-430	-257	4	-15.6	64	17.8	330	166	930	499
400	-257	5	-15.0	65	18.3	340	171	940	504
-420	-251	5		65		340			
-410	-246	6	-14.4	66	18.9	350	177	950	510
-400	-240	7	-13.9	67	19.4	360	182	960	516
-390	-234	8	-13.3	68	20.0	370	188	970	521
-380	-229	9	-12.8	69	20.6	380	193	980	527
-370	-223	10	-12.2	70	21.1	390	199	990	532
-360	-218	11	-11.7	71	21.7	400	204	1000	538
-350	-212	12	-11.1	72	22.2	410	210	1020	549
-340	-207	13	-10.6	73	22.8	420	215	1040	560
-330	-201	14	-10.0	74	23.3	430	221	1060	571
-320	-196	15	-9.4	75	23.9	440	227	1080	582
-310	-190	16	-8.9	76	24.4	450	232	1100	593
-300	-184	17	-8.3	77	25.0	460	238	1120	604
-290	-179	18	-7.8	78	25.6	470	243	1140	616
-280	-173	19	-7.2	79	26.1	480	249	1160	627
-200		20	-6.7	80	26.7	490	254	1180	638
-273	-169						260	1200	649
-270	-168	21	-6.1	81	27.2	500			660
-260	-162	22	-5.6	82	27.8	510	266	1220	
-250	-157	23	-5.0	83	28.3	520	271	1240	671
-240	-151	24	-4.4	84	28.9	530	277	1260	682
-230	-146	25	-3.9	85	29.4	540	282	1280	693
-220	-140	26	-3.3	86	30.0	550	288	1300	704
-210	-134	27	-2.8	87	30.6	560	293	1350	732
-200	-129	28	-2.2	88	31.1	570	299	1400	760
-190	-123	29	-1.7	89	31.7	580	304	1450	788
-180	-118	30	-1.1	90	32.2	590	310	1500	816
-170	-112	31	-0.6	91	32.8	600	316	1550	843
-160	-107	32	0.0	92	33.3	610	321	1600	871
-150	-101	33	0.6	93	33.9	620	327	1650	899
-140	-96	34	1.1	94	34.4	630	332	1700	927
-130	-90	35	1.7	95	35.0	640	338	1750	954
		36	2.2	96	35.6	650	343	1800	982
-120	-84							1850	1010
-110	-79	37	2.8	97	36.1	660	349		
-100	-73	38	3.3	98	36.7	670	354	1900	1038
-90	-68	39	3.9	99	37.2	680	360	1950	1066
-80	-62	40	4.4	100	37.8	690	366	2000	1093
-70	-57	41	5.0	110	43	700	371	2050	1121
-60	-51	42	5.6	120	49	710	377	2100	1149
-50	-46	43	6.1	130	54	720	382	2150	1177
-40	-40	44	6.7	140	60	730	388	2200	1204
-30	-34	45	7.2	150	66	740	393	2250	1232
-20	-29	46	7.8	160	71	750	399	2300	1260
-10	-23	47	8.3	170	77	760	404	2350	1288
0	-17.8	48	8.9	180	82	770	410	2400	1316
		49	9.4	190	88	780	416	2450	1343
		50	10.0	200	92	790	421	2500	1371
100000000000000000000000000000000000000		51	10.6	210	99	800	427	2550	1399
		52	11.1	212	100	810	432	2600	1427
							432	2650	1454
		53	11.7	220	104	820		2700	1482
		54	12.2	230	110	830	443		
	1	55	12.8	240	116	840	449	2750	1510
		56	13.3	250	121	850	454	2800	1538
		57	13.9	260	127	860	460	2850	1566
		58	14.4	270	132	870	466	2900	1593
		59	15.0	280	138	880	471	2950	1621
		60	15.6	290	143	890	477	3000	1649

Degrees Cent. $^{\circ}C = \frac{5}{9} (^{\circ}F - 32)$ Degrees Fahr. $^{\circ}F = \frac{9}{5} ^{\circ}C + 32$ Degrees Kelvin $^{\circ}T = ^{\circ}C + 273.2$ Degrees Rankine $^{\circ}R = ^{\circ}F + 459.7$

FORMULAS

 $\frac{\text{Circle}}{\text{Circumference}} = \pi D = 2\pi R$ Area = πR^2 Length of Arc, $S = \emptyset R$ Length of Cord, $C = 2 R sine (\emptyset / 2)$ Area of Sector = (R S) / 2 Ø = Angle in Radians

Quadratic Equation

 $x = -b \pm \sqrt{b^2 - 4ac}$ 2a $ax^{2} = bx = c = 0$

Trig Functions

sine Ø = 0 / H cosine Ø = A / H $\tan \emptyset = 0 / A$

Pressure Rating

2S = OD - T 2S = ID + T Ρ Т

S = Design Stress T = Minimum Wall thickness P = Pressure Rating

Pipe Stiffnes

PS = 4.47 x (SDR - 1)³

E = Tensile Modulus, psi

Moment of Inertia (pipe)

 $= (\pi / 64) \times (OD^4 - ID^4)$

Pipe Weight (kg/m)

= (0D - T) x T x 0.003134 x SG = (ID + T) x T x 0.003134 x SG OD & ID are average dimensions, mm T = Average Wall Thickness, mm SG = Specific Gravity @ 73°F

Flow Coefficients Conversion Factors

Circle

A = 3.142 x R x R C = 3.142 x D R = D2 D = 2 x R

Sector of Circle

.01745 x R R = .01745 x ∝

Ellipse

A = 3.142 x A x B $C = 3.142 \sqrt{2} (A^2 + B^2)$

Rectangular Solid

 $A = 2 [W \times L + L]$ X H + H X W] $V = W \times L \times H$

Cone

 $A = 3.142 \times R \times S$ + 3.142 x R x R V = 1.047 x R x R x H

Cylinder

Bending Moment or Torque

To

newton-meter (N+m)

Cv	Kv	Kv ₁₀₀	f	Av	To Convert From	
	1	MULTIPLY BY	1		dyne-centimeter	
1	0.865	14.28	0.84	24 x 10-6	kilogram-force-meter	
1.156	1	16.50	0.96	28 x 10*	ounce-force-inch pound-force-inch	
0.07	0.06	1	0.068	1.68 x 10 ⁻⁶	pound-force-foot	
1.2	1.038	17.13	1	29 x 10 ⁻⁵	pound for or is a	
41.67 x 103	35.72 x 103	59.52 x 10°	34.5 x 103	1		

V = 3.142 x A x B x H $A = 6.282 \times \sqrt{A_2 + B_2}$ x H + 6.283 x A x B Sphere

Elliptical

A = 12.56 x R x R

V = 4.188 x R x R x R

For above containers:

Capacity in gallons = V 231 when V is in cubic inches. Capacity in gallons = 7.48 x V when V is in cubic feet.

Multiply By 1.000 000 x 10⁻⁷ newton-meter (N+m) 9,806,650 newton-meter (N+m) newton-meter (N+m) 7.061 552 x 10⁻³ newton-meter (N•m) 1.129 848 x 101

1.355 818

TO

FROM

Cv

Kν

Kv100

F Av

DIMENSIONS, WEIGHTS & PRESSURE RATINGS FOR PVC AND CPVC PIPE

Weight of pipe (kg/m) plain end CPVC PVC
150
210
.268 .253 .342 .313 .193
.357 .327 .461 .417 .194
.520 .491 .670 .610 .313
.714 .655 .923 .848 .402
.848 .774 1.131 1.026 .521 .476
1.146 1.042 1.563 1.429 .804 .670
1.801 1.652 2.381 2.173 1.161 .952
2.351 2.158 3.185 2.917 1.697 1.399 1.146 .938
3.349 3.081 4.643 4.271 2.798 2.292 1.860 1.518
4.554 4.182 6.459 5.982 4.286 3.497 2.813 2.277
5.908 5.432 8.870 8.155 6.087 4.956 4.003 3.200

DIMENSIONS, WEIGHTS & PRESSURE RATINGS FOR PVC AND CPVC PIPE

U.S. UNITS

METRIC UNITS

SCHEDULE (DR) SDR Nominal Outside pipe size dia.	Max. Weight working Min. Average of pipe pressure wall inside (Ibs./ft.) (PSI thickness dia. plain end	Nominal Outside pipe size dia.	Max. working Min. Average Weight pressure wall inside of pipe (kg/ (kPa thickness dia. plain end at 23°C) (mm) (Mm) CPVC I	
(inches) (inches) SCHD 40 (DR 27) 8.625 SCHD 80 (DR 17) SDR 21 SDR 26 SDR 32.5 SDR 41 8	at 73°F) (inches) (inches) CPVC PVC 160 .322 7.941 5.98 5.50 250 .500 7.565 9.05 8.32 200 .411 7.756 6.91 160 .332 7.921 5.65 125 .266 8.063 4.55 100 .210 8.180 3.63	(mm) (mm) 219.05	1 100 8.18 201.71 8.900 8 1 720 12.70 192.13 13.469 12 1 380 10.40 196.99 10 1 100 8.42 201.79 8 860 6.72 204.79 6	.185 .382 .283 .408 .771 .402
SCHD 40 (DR 30) SCHD 80 (DR 18) SDR 21 SDR 26 SDR 32.5 SDR 41	140 .365 9.976 8.26 7.78 230 .593 9.493 12.85 11.81 200 .512 9.667 10.73 160 .413 9.874 8.76 125 .331 10.048 7.08 100 .262 10.195 5.64	273.05	1590 15.06 241.13 19.124 17 1380 12.98 245.55 15 1100 10.48 250.81 13 860 8.40 255.23 10	.578 .576 .968 .036 .536 .393
SCHD 40 (DR 32) SCHD 80 (DR 19) SDR 21 SDR 26 SDR 32.5 SDR 41	130 .406 11.888 11.20 10.30 230 .687 11.294 18.46 16.98 200 .607 11.465 15.10 160 .490 11.711 12.35 125 .392 11.919 9.94 100 .311 12.091 7.94	323.90	1590 17.44 286.92 27.473 25 1380 15.38 291.28 22 1100 12.44 297.52 18 860 9.96 302.78 14	.328 .269 .471 .379 .792 .816
SCHD 40 (DR 32) SCHD 80 (DR 19) SDR 21 SDR 26 SDR 32.5 SDR 41	130 .438 13.072 12.18 220 .750 12.412 20.34 200 .665 12.590 18.18 160 .538 12.859 14.88 125 .431 13.100 11.83 100 .342 13.277 9.58	350	1540 19.05 315.22 30 1380 16.88 319.80 27 1100 13.66 326.62 22 860 10.76 332.78 17	.130 .270 .065 .144 .615 .260
SCHD 40 (DR 32) SCHD 80 (DR 19) SDR 21 SDR 26 SDR 32.5 SDR 41	130 .500 14.936 15.96 220 .843 14.224 26.03 200 .760 14.388 23.76 160 .615 14.696 19.41 125 .492 14.970 15.47 100 .391 15.172 12.52	406.40	1540 21.41 361.29 38 1380 19.30 365.48 35 1100 15.62 373.28 28 860 12.32 380.24 22	.75 .74 .36 .89 .99
SCHD 40 (DR 32) SCHD 80 (DR 19) SDR 21 SDR 26 SDR 32.5 SDR 41	130 .562 16.809 20.11 220 .937 16.014 32.76 200 .857 16.182 30.11 160 .693 16.531 24.62 125 .554 16.825 19.86 100 .440 17.065 15.92	457.20 450	1540 23.80 406.76 48 1380 21.72 411.14 44 1100 17.60 419.88 36 860 14.06 427.36 29	.93 .75 .81 .64 .55 .69
SCHD 40 (DR 34) SCHD 80 (DR 19) SDR 21 SDR 26 SDR 32.5 SDR 41	120 .593 18.743 23.62 220 1.031 17.814 40.09 200 .952 17.982 37.17 160 .770 18.368 30.37 125 .615 18.696 24.47 100 .489 18.963 19.61	508.00	1450 26.19 452.48 59 1380 24.12 456.86 55 1100 19.56 466.54 45 860 15.62 474.88 36	.15 .66 .32 .20 .42 .18
SCHD 40 (DR 35) SCHD 80 (DR 20) SDR 21 SDR 26 SDR 32.5 SDR 41	120 .687 22.544 32.87 210 1.218 21.418 56.88 200 1.143 21.576 53.54 160 .924 22.041 43.77 125 .740 22.431 35.35 100 .585 22.760 28.12	609.60	1470 30.94 544.02 84 1380 28.96 548.20 79 1100 23.46 559.86 65 860 18.80 569.74 52	.92 .65 .14 .61 .84
		Pressur	re ratings in accordance with ASTM D 178	85.

ADDITIONAL HELPFUL FORMULAS

Area of outside surface	(sq.ft./linear foot)	= .2618 D W
Weight of PVC pipe	(lbs./foot)	= 1.941t (D - t)
Weight of CPVC pipe	(lbs./foot)	= 2.110t (D - t)
Weight of water	(lbs./foot)	= 0.3405 d ²
Moment of inertia	(inches⁴)	= 0.0491 (D4 - d4)
Section modulus	(inches3)	= 0.0982 (D ⁴ - d ⁴)
		D

Where: t = mean pipe wall thickness (inches) D = outside diameter (inches) d = inside diameter (inches) 1. PVC and CPVC are not recommended for

- - compressed air or gas service. 2. For threaded systems, reduce maximum working pressure by 50%.
 - 3. For services exceeding 73°F, see
 - temperature correction chart, page 22.
 - For flanged systems, the maximum working pressure is 150 psi @ 73°F.

GLOSSARY OF PIPING TERMS

ABRASION RESISTANCE— The measure of a material's ability to withstand erosion when subjected to rubbing, scraping, wearing, scouring, etc., conditions.

ACETAL PLASTICS—A group of plastics made from resins which have been obtained by heating aldehydes or ketones with alcohols.

ACIDS—Normally a water-soluble compound containing hydrogen and other elements that are capable of reacting with a base to form a salt. They turn blue litmus paper red.

ACRYLONITRILE-BUTADIENE-STYRENE (ABS) PLASTICS—A group of plastics made from polymers with prescribed percentages of acrylonitrile, butadiene, and styrene.

ADHESIVE—A substance capable of holding materials together by surface attachment.

AGING—The effect on materials exposed to an environment for a period of time. Also, the act of exposing materials to an environment for a period of time.

ALKALIES—Compounds capable of neutralizing acids.

ANTIOXIDANT—A substance added to a plastic compound to retard degradation due to contact with air (oxygen).

BEAM LOADING—The process of applying a specified force (load) to a piece of pipe which is supported at two points. It is usually expressed in pounds per the distance between the centers of the supports.

BELLED-END—A term used to describe a pipe end which has been enlarged to have the same inside dimensions as a fitting socket. It acts as a coupling when joining pipe.

BLISTER—An undesirable air or gas filled bubble (bump) on the surface of a plastic part.

BOND—To attach by the use of an adhesive.

BURST STRENGTH—The amount of internal pressure a piece of pipe or a fitting will hold before breaking.

CALENDERING —A process for making thin sheets of plastic or rubber in which a heated plastic or rubber compound is squeezed between heavy rollers.

CELLULOSE ACETATE—A type of resin made from the reaction of acetic acid or acetic anhydride with a cellulose base (cotton and/or wood pulp).

CEMENT (SOLVENT CEMENT)—An adhesive used to bond plastics which is a "solution" of a plastic resin and a volatile solvent.

CHEMICAL RESISTANCE—The ability of a plastic to withstand the effects of chemicals at various concentrations and temperatures.

COLD FLOW—A change in the shape or the dimensions of a plastic part when subjected to a load (weight or pressure) at room temperature.

COMPOUND—The mixture of ingredients, consisting of a plastic resin and specified additives, used to manufacture a plastic part.

CONDENSATION—A chemical reaction involving the combination of molecules with the result being the elimination of a simple molecule, such as water, and the formation of a more complex compound of greater molecular weight.

COPOLYMER—The product formed by the simultaneous polymerization of two or more polymerizeable chemicals (monomers).

CRAZING—Small, fine cracks on or under the surface of a plastic.

CREEP—The dimensional change, beyond the initial elastic elongation caused by the application of a load, over a specified period of time. It is normally expressed in inches per inch per unit of time.

CURE—To change the properties of a polymer to a stable, usable, and final state by the use of chemical agents, heat, or radiation.

DEFLECTION TEMPERATURE (HEAT DISTORTION)— The temperature which will cause a plastic specimen to deflect a certain distance when a specified load is applied.

DEGRADATION—A deleterious change in the chemical structure, physical properties, or appearance of a plastic.

DELAMINATION —The separation of the layers of material in a laminate.

DETERIORATION—A permanent change in the physical properties of a plastic evidenced by impairment of these properties.

DIELECTRIC STRENGTH—The force required to drive an electric current through a specific thickness of a material.

DIFFUSION—The movement of gas or liquid particles or molecules in a body of fluid through or into a medium and away from the main body of fluid.

DIMENSIONAL STABILITY—The capability of a plastic part to maintain its original shape and dimensions under conditions of use.

DRY- BLEND—A dry compound prepared without fluxing or the addition of a solvent.

ELASTICITY—The property of a plastic which allows it to return to its original dimensions after deformation.

ELASTIC LIMIT—The load point at which a material will not return to its original shape and size after the load has been released.

ELASTOMER—A substance which when stretched to approximately twice its length, at room temperature, will quickly return to its original length when the stretching load is relieved.

ELECTRICAL PROPERTIES—The resistance of a plastic to the passage of electricity.

ELONGATION—The percentage of the original length which a material will deform, under tension, without failing.

EMULSION—A dispersion of one insoluble liquid into another insoluble liquid.

GLOSSARY OF PIPING TERMS

ENVIRONMENTAL STRESS CRACKING — Cracks which develop when a plastic part is subjected to incompatible chemicals and put under stress.

ESTER— The compound formed during the reaction between an alcohol and an acid.

ETHYLENE PLASTIC—Plastics based on polymers or copolymers of ethylene and other monomers in which ethylene is the greatest amount by weight.

EXTRUSION—The process used to continuously form a shape by forcing a heated or unheated plastic through a shaping orifice (die).

FILLER—A relatively inert material added to a plastic to modify its strength, permanence, working properties, other qualities, or to lower costs.

FLEXURAL STRENGTH— The measure of a material's ability to withstand a specified deformation under a beam load (bending) at 73°F. Normally expressed in PSI.

FORMING—A process in which the shape of plastic pieces such as sheets, rods, or tubes are changed to a desired configuration.

FORMULATION— The combination of ingredients used to make a finished plastic product. Also see compound.

FUSE—To join plastic parts by softening the material with heat or solvents.

GATE—The constriction in the flow channel between the runner and the mold cavity in an injection mold.

GLASS TRANSITION—The reversible change in an amorphous polymer from (or to) a viscous condition to (or from) a hard and relatively brittle one.

GLASS TRANSITION TEMPERATURE—The approximate midpoint of the temperature range over which the glass transition takes place.

GUSSET—A piece used to give additional size or strength to a plastic part at a particular location.

HARDNESS—The measure of a material's ability to resist indentation.

HEAT RESISTANCE—The ability of a material to withstand the effects of exposure to high temperatures.

HOOP STRESS—The circumferential stress, imposed on a pipe wall when exposed to an internal pressure load. Usually expressed in PSI.

IMPACT STRENGTH—A measure of a plastic part's ability to withstand the effects of dropping and/or striking. There are two commonly used test methods, Notched Izod and Tup. Notched Izod uses a pendulum type machine to strike a notched specimen. Tup testing uses a falling weight (tup) to strike a pipe or fitting specimen.

INJECTION MOLDING—The process used to form a shape by forcing a heated plastic, in a fluid state and under pressure, into the cavity of a closed mold.

ISO EQUATION—The equation which shows the relationship between stress, pressure, and dimensions in pipe.

JOINT—The point where a pipe and fitting or two pieces of pipe are connected together.

KETONES—A group of compounds having two alkyl groups attached to a carbonyl (CO) group.

LIGHT STABILITY—A feature of a plastic which allows it to retain its original color and physical properties when exposed to sun or artificial light.

LIGHT TRANSMISSION— The amount of light which a plastic will allow to pass through.

LONGITUDINAL STRESS—A tensile or compressive force placed upon the long axis of a plastic part.

LUBRICANT—Any substance which reduces the friction between moving solid surfaces.

MODULUS—A term used to describe the load required to cause a specified percentage of elongation. It is usually expressed in PSI or kilos per square centimeter.

MONOMER—A low-molecular-weight substance whose molecules can react with other molecules to form a polymer.

NON-FLAMMABLE— Incapable of supporting combustion.

NON-TOXIC—Non-poisonous.

NYLON PLASTICS—Plastics based on resins composed principally of a long-chain synthetic polymeric amide which has recurring amide groups as an integral part of the main polymer chain.

OLEFIN PLASTICS—A group of plastics based on polymers made by the polymerization or copolymerization of olefins with other monomers, with the olefins being at least 50% of the weight. Polypropylene, polyethylene, and polybutylene are examples.

ORGANIC CHEMICAL—Any chemical which contains carbon.

PHENOLIC PLASTICS-A group of plastics based on resins made by the condensation of phenols with aldehydes.

PLASTIC—A material that contains as an essential ingredient one or more organic polymeric substances of large molecular weight, is solid in its finished state, and, at some stage in its manufacture or in its processing into finished articles, can be shaped by flow.

PLASTICITY—The property of plastics which allows them to be formed, without rupture, continuously and permanently by the application of a force which exceeds the yield value of the material.

PLASTICIZER—A substance incorporated in a plastic to increase its workability, flexibility, or distensibility.

PLASTIC PIPE—A hollow cylinder of a plastic material in which the wall thicknesses are usually small when compared to the diameter and in which the inside and outside walls are essentially concentric.

POLYBUTYLENE PLASTICS—Plastics based on polymers made with butene as essentially the sole monomer.

POLYETHYLENE PLASTICS—Plastics based on polymers made with ethylene as essentially the sole monomer.

GLOSSARY OF PIPING TERMS

POLYMER—A product formed by the chemical reaction of the addition of a large number of small molecules which have the ability to combine and reach high molecular weights.

POLYMERIZATION—A chemical reaction in which the molecules of monomers are linked together to form polymers.

POLYOLEFIN PLASTICS—Plastics based on polymers made with an olefin(s) as essentially the sole monomer(s).

POLYPROPYLENE PLASTICS—Plastics based on polymers made-with propylene as essentially the sole monomer.

POLYSTYRENE—A polymer prepared by the polymerization of styrene as the sole monomer.

POLYVINYL CHLORIDE PLASTICS—Plastics obtained by the polymerization of vinyl chloride. The addition of various ingredients, such as stabilizers, colorants, lubricants, and fillers enhance the processability and performance.

POROSITY—A term describing a plastic part which has many visible voids.

PRESSURE RATING—The maximum pressure at which a plastic part can safely function without failing.

QUICK BURST—A term used to describe the amount of internal pressure required to burst a pipe or fitting when the pressure is built up over a 60-70 second interval of time.

REINFORCED PLASTIC—A plastic with high strength fillers imbedded in the composition, causing some mechanical properties to be superior to those of the base resin.

RESIN—A solid or pseudosolid organic material, often having a high molecular weight, which exhibits a tendency to flow when subjected to stress, usually has a softening or melting range, and usually fractures conchoidally.

RUNNER—The secondary feed channel in an injection mold that runs from the inner end of the sprue to the cavity gate. Also, the solidified piece of plastic which forms in the feed channel when the injection molded part cools.

SAMPLE—A small part or portion of a material or product intended to be representative of the whole.

SCHEDULE—A pipe sizing system for the outside diameter and wall thickness dimensions which was started by the iron pipe industry. Normally, as the diameter increases, the pressure rating decreases for any given schedule of pipe.

SELF-EXTINGUISHING—A term describing a plastic material which stops burning when the source of the burning is removed.

SHRINK MARK—A depression in the surface of a molded plastic part where it has retracted from the mold.

SOFTENING POINT—The temperature at which a plastic changes from rigid to soft.

SOLVENT—A medium into which a substance is dissolved.

SOLVENT CEMENT—An adhesive consisting of a plastic dissolved into a solvent and used to bond plastic surfaces.

SOLVENT CEMENTING—Using a solvent cement to make pipe joint.

SPECIFIC GRAVITY—The ratio of the mass of a material to the mass of an equal volume of water.

SPRUE—The primary feed channel that runs from the outer face of an injection mold to the runner or the gate.

STABILIZER—An ingredient added to a plastic compound to inhibit or retard undesirable changes in the material.

STANDARD DIMENSION RATIO (SDR) PIPE—A type of pipe in which the dimension ratios are constant for any given class. Unlike "schedule" pipe, as the diameter increases the pressure rating remains constant for any given class of pipe.

STIFFNESS FACTOR—A term describing the degree of flexibility in a piece of pipe when subjected to an external load.

STRESS-CRACK—An external or internal crack in a plastic caused by tensile stresses less than its short-time mechanical strength.

SUSTAINED PRESSURE TEST—A test in which a plastic part is subjected to a constant internal pressure load for 1000 hours.

TEAR STRENGTH—A measure of a material's ability to resist tearing.

TENSILE STRENGTH—The measure of a plastic's ability to resist a stretching force. It is normally expressed in the PSI required to rupture a test specimen.

THERMAL CONDUCTIVITY—A measure of a plastic's ability to conduct heat.

THERMAL CONTRACTION—The decrease in length of a plastic part due to a change in temperature.

THERMAL EXPANSION—The increase in length of a plastic part due to a change in temperature.

THERMOPLASTICS—A group of plastics which can repeatedly be softened by heating and hardened by cooling.

THERMOSETTING PLASTICS—A group of plastics which, having been cured by heat, chemicals, or other means, are substantially infusible and insoluble. They are permanently hardened.

VINYL CHLORIDE PLASTICS—Plastics based on polymers or copolymers of vinyl chloride with other monomers, with the vinyl chloride being the greatest amount by weight.

VISCOSITY—A term describing a material's resistance to flow.

VOLATILE—A property of liquids in which they pass away by evaporating.

WELD LINE (KNIT LINE)—A term used to describe a mark on a molded plastic part formed by the union of two or more streams of plastic flowing together.

YIELD POINT—The point at which a plastic material will not withstand a stretching force. It will continue to elongate with no increase in load after reaching that point.

