SYSTEMS ENGINEERING DATA FOR THERMOPLASTIC PIPING

INTRODUCTION

In the engineering of thermoplastic piping systems, it is necessary to have not only a working knowledge of piping design but also an awareness of a number of the unique properties of thermoplastics.

In addition to chemical resistance, important factors to be considered in designing piping systems employing thermoplastics are:

1. Pressure ratings.
2. Water hammer.
3. Temperature-Pressure relationships.
4. Friction-loss characteristics.
5. Dimensional and Weight data.

These factors are considered in detail in this section.

PRESSURE RATINGS OF THERMOPLASTICS

DETERMINING PRESSURE-STRESS-PIPE

 RELATIONSHIPS
ISO EQUATION

Circumferential stress is the largest stress present in any pressurized piping system. It is this factor that determines the pressure that a section of pipe can withstand. The relation-ship of stress, pressure and pipe dimensions is described by the ISO (for International Standardization Organization) Equation. In various forms this equation is:

$$
\begin{aligned}
& P=\frac{2 S}{R-1}=\frac{2 S t}{D_{0}-t} \quad \frac{2 S}{P}=\left(\frac{D_{0}}{t}\right)-1 \\
& \frac{2 S}{P}=R-1 \quad S=\frac{P(R-1)}{2}
\end{aligned}
$$

Where:
$P=$ Internal Pressure, psi
$S=$ Circumferential Stress, psi
$t=$ Wall thickness, in.
$D_{0}=$ Outside Pipe diameter, in.
$R=D_{0} / t$

LONG-TERM STRENGTH

To determine the long-term strength of thermoplastic pipe, lengths of pipe are capped at both ends (see Figure 1) and subjected to various internal pressures, to produce circumferential stresses that will produce failure in from 10 to 10,000 hours. The test is run according to ASTMD 1598 Standard Test for Time-to-Failure of Plastic Pipe Under LongTerm Hydrostatic Pressure.

The resulting failure points are used in a statistical analysis (outlined in ASTM D-2837; see page 6 to determine the characteristic regression curve that represents the stress/time-to-failure relationship for the particular thermoplastic pipe compound under test. This curve is represented by the equation: $\quad \log =a+b \log S$

Where:

a and b are constants describing the slope and intercept of the curve, and T and S are time-to-failure and stress, respectively.

The regression curve may be plotted on a log-log paper, as shown in Figure 2, and extrapolated from 10,000 to 100,000 hours (11.4 years). The stress at 100,000 hours is known as the Long Term Hydrostatic Strength (LTHS) for that particular thermoplastic compound. From this (LTHS) the Hydrostatic Design Stress (HDS) is determined by applying the service factor multiplier, as described below.
FIGURE 1
LONG-TERM STRENGTH TEST PER ASTM D1 598

Pipe test specimen per ASTM D 1598 for "Time-to-Failure of Plastic Pipe Under Long-Term Hydrostatic Pressure"

FIGURE 2
REGRESSION CURVE-STRESS/TIME-TO-FAILURE FOR PVC TYPE I

SERVICE FACTOR

The Plastics Pipe Institute (PPI) has determined that a service (design) factor of one-half the Hydrostatic Design Basis would provide an adequate safety margin for use with water to ensure useful plastic-pipe service for a long period of time. While not stated in the standards, it is generally understood within the industry that this "long period of time" is minimum of 50 years.

SYSTEMS ENGINEERING DATA FOR THERMOPLASTIC PIPING

Accordingly, the standards for plastic pipe, using the 0.5 service factor, required that the pressure rating of the pipe be based upon this Hydrostatic Design Stress, again calculated with the ISO equation.
While early experience indicated that this service factor, or multiplier, of 0.5 provided adequate safety for many if not most uses, some experts felt that a more conservative service factor of 0.4 would better compensate for water hammer pressure surges, as well as for slight manufacturing variations and damage suffered during installation.

The PPI has issued a policy statement officially recommending this 0.4 service factor. This is equivalent to recommending that the pressure rating of the pipe should equal 1.25 times the system design pressure for any particular installation. Based upon this policy, many thousands of miles of thermoplastic pipe have been installed in the United States without failure.

It is best to consider the actual surge conditions, as outlined later in this section. In addition, substantial reductions in working pressure are advisable when handling aggressive chemical solutions and in high-temperature service.
Numerical relationships for service factors and design stresses of PVC are shown in Table I-A below.

SERVICE FACTORS AND HYDROSTATIC DESIGN STRESS (HDS)*

SERVICE FACTOR	HDS
0.5	$2000 \mathrm{psi}(13.8 \mathrm{MPa})$
0.4	$1600 \mathrm{psi}(11 \mathrm{MPa})$

*Material: PVC Type 1 \& CPVC

TEMPERATURE-PRESSURE AND MODULUS RELATIONSHIPS

Temperature Derating.

Pressure ratings for thermoplastic pipe are generally deter-mined in a water medium at room temperature $\left(73^{\circ} \mathrm{F}\right)$. As the system temperature increases, the thermoplastic pipe becomes more ductile, increases in impact strength and decreases in tensile strength. The pressure ratings of thermoplastic pipe must therefore be decreased accordingly.
The effects of temperature have been exhaustively studied and correction (derating) factors developed for each thermoplastic piping compound. To determine the maximum operating pressure at any given temperature, multiply the pressure rating at ambient shown in Table 1by the temperature correction factor for that material shown in Table 2. Attention must also be given to the pressure rating of the joining technique i.e. Threaded system normally reduces pressure capabilities, substantially.

TABLE 1
MAXIMUM OPERATING PRESSURES (PSI) AT $73^{\circ} \mathrm{F}$ AMBIENT
BASED UPON A SERVICE FACTOR OF . 5

NOMINAL SIZE	PVC \& CPVC SCHEDULE 40 SOLVENT WELD	PVC \& CPVC SCHEDULE BD		POLYPROPYLENE*(PP)		POLYVINYLIDENE FLUORIDE (PVDF)			
				PPRO-SEAL	PROLINE SDR	$\begin{gathered} \text { SUPER PROLINE } \\ \text { SDR } \end{gathered}$		SCHEDULE 30	
		$\begin{aligned} & \text { SOLVENT } \\ & \text { WELD } \\ & \hline \end{aligned}$	THREADED					SOCKET	
					1132	11	32	FUSIOM	READE
1/4	780	1130	-	N/A	N/A NA	N/A	N/A	N/A	N/A
3/3	620	920	-	NNA	N(A NA	N/A	N/A	N/A	N/A
1/2	600	850	420	150	16045	230	NUA	975	290
3/4	480	690	340	150	16045	230	N/A	790	235
1	450	630	320	150	$160 \quad 45$	230	NA	725	215
1-1/4	370	520	260	NVA	$160 \quad 45$	2290	N/A	600	180
1-1/2	330	471	240	150	$\begin{array}{ll}160 & 45\end{array}$	230	N/A	540	160
2	280	400	200	150	$160 \quad 45$	230	N/A	465	135
2-1/2	300	425	210^{+4}	NVA	$160 \quad 45$	N/A	169	NVA	N/R
3	260	375	$190^{* *}$	N/A	$\begin{array}{ll}160 & 45\end{array}$	N/A	160	430	N/R
4	220	324	$160^{* *}$	N/A	$160 \quad 45$	N/A	160	370	N/R
6	180	280	N/R	NVA	$160 \quad 45$	N/A	160	NVA	N/R
8	160	250	N/R	N/A	$\begin{array}{ll}160 & 45\end{array}$	N/A	160	NA	N/A
10	140	230	N/R	N/A	$160 \quad 45$	N/A	160	NVA	N/A
12	130	230	N/R	N/A	16045	N/A	160	NVA	N / A

[^0]
SYSTEMS ENGINEERING DATA FOR THERMOPLASTIC PIPING

Table 2
TEMPERATURE CORRECTION FACTORS

OPERATING TEMPERATURES ${ }^{\circ} \mathrm{F}$	FACTORS					
			POLYPROPYLENE		POLYVINYLIDENE FLUORIDE	
	PVC	CPVC	PPRO-SEAL NATURAL	PROLINE	$\begin{aligned} & \text { SUPER } \\ & \text { PROLINE } \end{aligned}$	SCHEDULE 80
73	1.00	1.00	1.00	1.00	1.00	1.00
80	. 88	. 94	. 93		. 95	. 93
90	. 75	. 86	83		. 87	. 87
100	. 62	. 78	. 74	. 64	. 80	. 82
110	. 50	. 71	. 66			. 76
120	. 40	. 64	. 58		. 68	. 71
130	. 30	. 57	. 51			. 65
140	. 22	. 50	. 40	. 40	. 58	. 61
150	NR	. 43	. 38			. 57
160	NR	. 37	. 35		. 49	. 54
180	NR	. 25	23	. 28	. 42	. 47
200	NR	. 18	. 14	. 10	. 36	. 41
210	NR	. 16	. 10	N/R		. 38
220	NR	N/R	N/R	N/R		. 35
240	NR	NR	N/R	N/R	. 25	
250	NR	N/R	N/R	N/R		. 28
280	NR	N/R	N/R	N/R	. 18	22

FLANGED SYSTEMS
Table 3 - MAXIMUM OPERATING PRESSURE (PSI) FOR FLANGED SYSTEMS

FLANGED SYSTEMS

Maximum pressure for any flanged system is 150 psi. At elevated temperatures the pressure capability of a flanged system must be derated as shown in Table 12.

Design Pressure - Pressure rating at $73^{\circ} \mathrm{F}$ x temperature correction factor.

OPERATING TEMPERATURE ${ }^{\circ} \mathrm{F}$	PVC*	CPVC *	PP*	PVDF
100	150	150	150	150
110	135	145	140	150
120	110	135	130	150
130	75	125	118	150
140	50	110	105	150
150	N/R	100	93	140
160	N/R	90	80	133
170	N/R	80	70	125
180	N/R	70	50	115
190	N/R	60	N/R	106
200	N/R	50	N/R	97
210	N/R	40	N/R	90
240	N/R	N/R	N/R	60
280	N/R	N/R	N/R	25

N/R = Nol Recommended

* PVC and CPVC flanges sizes 2-1/2 through 3-fand 4 -inch threaded must be backwelded for the above pressure capability to be applicable.
** Threaded PP flanges size $1 / 2$ through 4 inch as well as the 6^{*} back welded socket liange are not recommended for pressure applications (drainage only).

PRESSURE RATINGS
 PVC LARGE DIAMETER FABRICATED FITTINGS AT 73 ${ }^{\circ}$ F 10" THROUGH 24"

The following tables indicate the working pressure recommended by the manufacturer for large diameter PVC fabricated fittings. These fittings are not generally recommended for high pressure applications. Pressure capabilities are not necessarily the same as the rating of the pipe from which they are fabricated. Be sure pressure to temperature correction factors are considered when system design calls for temperatures above $73^{\circ} \mathrm{F}$.

Water hammer and surge pressure are the two most critical elements in large-diameter design. Keeping velocities below 5 feet per second and working pressures to these guidelines will give years of trouble-free service.

Table 4
90° ELBOW

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{aligned} & \text { PSI } \\ & \text { RTG } \end{aligned}$	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \text { PSI } \\ \text { RTG } \end{gathered}$
10	22	140	34	230
12	30	130	50	230
14	40	130	70	220
16	56	130	100	220
18	90	100	93	125
20	121	50	125	75
24	202	50	208	75

Table 5
COUPLING

$\begin{aligned} & \text { NOMINAL } \\ & \text { SIZE } \\ & \text { (IN.) } \end{aligned}$	SCHEDULE 40		SCHEDULE 80	
	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \text { PSI } \\ \text { RTG } \end{gathered}$	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \text { PSI } \\ \text { RTG } \end{gathered}$
10	9	140	15	230
12	15	130	23	230
14	19	130	33	220
16	29	130	54	220
18	33	100	53	160
20	45	50	74	75
24	77	50	110	75

Table 6
TEE

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	WIT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
$\mathbf{1 0}$	28	140	44	230
$\mathbf{1 2}$	41	130	69	230
$\mathbf{1 4}$	54	130	95	220
$\mathbf{1 6}$	78	130	139	220
$\mathbf{1 8}$	115	100	156	160
$\mathbf{2 0}$	153	50	204	75
$\mathbf{2 4}$	231	50	338	75

Table 7
45° ELBOW

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{aligned} & \text { PSI } \\ & \text { RTG } \end{aligned}$	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{aligned} & \text { PSI } \\ & \text { RTG } \end{aligned}$
10	15	140	24	230
12	21	130	36	230
14	30	130	52	220
16	42	130	75	220
18	47	100	71	160
20	62	50	95	75
24	103	50	159	75

Table 8
REDUCING TEE

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	WT. (LBS.)	PSI RTG	WT. (LBS.)	PSI RTG
$\mathbf{1 0 \times 8}$	23	140	32	230
$\mathbf{1 0 \times 6}$	21	140	30	230
$\mathbf{1 0 \times 4}$	18	140	28	230
$\mathbf{1 2 \times 1 0}$	32	130	55	220
$\mathbf{1 2 \times 8}$	30	130	49	220
$\mathbf{1 2 \times 6}$	26	130	47	220
$\mathbf{1 2 \times 4}$	24	130	45	220
$\mathbf{1 4 \times 1 2}$	46	100	70	160
$\mathbf{1 4 \times 1 0}$	39	100	66	160
$\mathbf{1 4 \times 8}$	36	100	59	160
$\mathbf{1 6 \times 1 4}$	68	100	118	160
$\mathbf{1 6 \times 1 2}$	61	100	105	160
$\mathbf{1 6 \times 1 0}$	54	100	90	160
$\mathbf{1 6 \times 8}$	49	100	82	160
$\mathbf{1 8 \times 1 6}$	82	100	132	160
$\mathbf{1 8 \times 1 4}$	73	100	116	160
$\mathbf{2 0 \times 1 8}$	104	75	160	100
$\mathbf{2 0 \times 1 6}$	98	75	156	100
$\mathbf{2 4 \times 2 0}$	162	50	251	75

PRESSURE RATINGS PVC LARGE DIAMETER FABRICATED FITTINGS AT 73º ${ }^{\circ}$ 10" THROUGH 24"

Table 9
CONCENTRIC REDUCER

NOMINAL SIZE (IN.)	SCHEDULE 40	
	WT. (L.BS.)	PSI RTG
10×8	9	140
10×6	22	140
10×4	23	140
12×10	15	130
12×8	31	130
12×6	34	130
14×12	23	130
14×10	36	130
16×14	32	130
16×12	46	130
18×16	45	100
20×18	87	100
24×20		100

Table 10
BUSHING (SPIG x SOC)

NOMINAL SIZE (IN.)	WT. (LBS.)	PSI RTG
	11	140
10×6	16	140
10×4	20	140
12×10	15	130
12×8	26	130
12×6	31	130
14×12	24	100
16×14	22	100
16×12	46	100
16×10	61	100
16×8	72	100
18×16	30	100
20×18	33	100
24×20	55	100

Table 12
MALE ADAPTOR

NOMINAL SIZE (IN.)	SCHEDULE 40	
	WT.	
6	6	PSI
(LBS.)	RTG	
8	7	25
10	8	25
12	14	25

Table 11
EXTENDED BUSHING

NOMINAL SIZE (IN.)	$\|c\|$ WCHE (LBS.)	PSI RTG
	11	140
12×10	19	130
14×12	28	130
16×14	38	130

Table 13
FEMALE ADAPTOR

NOMNAL SIZE (IN.)	SCHEDULE 40	
	WT.	
6	6	PSI
(LBS.)	RTG	
8	7	25
10	8	25
12	14	25

PRESSURE RATINGS PVC LARGE DIAMETER FABRICATED FITTINGS AT $73^{\circ} \mathrm{F}$

Table 14
CROSS

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{aligned} & \hline \text { PSI } \\ & \text { RTG } \end{aligned}$	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \hline \text { PSI } \\ \text { RTG } \end{gathered}$
3	2	240	5	260
4	3	220	7	240
6	13	160	22	240
8	22	160	30	240
10	38	140	62	230
12	58	130	95	230
14	74	130	129	220
16	107	130	190	220
18	117	100	185	160
20	158	50	247	75
24	267	50	413	75

Table 15
FLANGE (BLIND)

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	$\begin{aligned} & \text { WT. } \\ & \text { (LBS.) } \end{aligned}$	$\begin{gathered} \text { PSI } \\ \text { RTG } \end{gathered}$	$\begin{aligned} & \text { WT. } \\ & \text { (LBS.) } \end{aligned}$	$\begin{gathered} \hline \text { PSI } \\ \text { RTG } \end{gathered}$
10	16	25	32	75
12	21	25	42	75
14	26	25	52	75
16	33	25	66	75
18	36	25	72	75
20	44	25	88	75
24	57	25	114	75

Table 16
CAP

NOMINAL SIZE (IN.)	SCHEDULE 40		SCHEDULE 80	
	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \hline \text { PSI } \\ \text { RTG } \end{gathered}$	$\begin{gathered} \text { WT. } \\ \text { (LBS.) } \end{gathered}$	$\begin{gathered} \hline \text { PSI } \\ \text { RTG } \end{gathered}$
10	5	140	14	230
12	7	130	17	230
14	23	130	35	220
16	32	130	49	220
18	38	100	54	160
20	49	50	69	75
24	74	50	108	75

Table 17
IPS PIPE DIMENSION TABLE

NOMINAL PIPE SIZE (N.)	O.D.	SCHEDULE 40		SCHEDULE 80	
		AVERAGE I.D.	MINIMUM WALL	AVERAGE I.D.	MINIMUM WALL
1	1.315	1.033	. 133	. 835	. 179
1-1/4	1.660	1.364	. 140	1.256	. 191
1-1/2	1.900	1.592	. 145	1.476	. 200
2	2.375	2.049	. 154	1.913	. 218
3	3.500	3.042	. 216	2.864	. 300
4	4.500	3.998	. 237	3.786	. 337
5	5.563	5.047	. 258	4.813	. 375
6	6.625	6.013	280	5.709	. 432
8	8.625	7.943	. 322	7.565	. 500
10	10.750	9.976	. 365	9.492	. 593
12	12.750	11.890	. 406	11.294	. 687
14	14.000	13.126	. 437	12.440	. 780
16	16.000	15.000	. 500	14.200	. 900
CLASS 100				CLASS 160	
18	18.000	17.120	. 440	16.614	. 693
20	20.000	19.022	. 489	18.460	. 770
24	24.000	22.870	. 585	22.152	. 924

SYSTEMS ENGINEERING DATA
 FOR THERMOPLASTIC PIPING

Table 18
MODULUS OF ELASTICITY ($\times 10$) PSI VS. TEMPERATURE

MATERIAL	TEMPERATURE, ${ }^{\circ} \mathrm{F}$								
	73	90	110	140	170	200	210	250	280
PVC	4.20	3.85	3.40	3.00	-	-	-	-	-
CPVC	4.23	4.10	3.70	3.27	2.93	2.40	2.26	-	-
PP Fuseal	2.00	1.30	. 097	. 074	0.61	0.55	0.53	-	-
PP Pressure	1.50	1.34	1.18	0.96	0.77	0.59	0.53	-	-
PVDF	2.13	1.66	1.37	1.04	0.80	0.61	0.55	0.37	0.29

EXTERNAL PRESSURES - COLLAPSE RATING

Thermoplastic pipe is frequently specified for situations where uniform external pressures are applied to the pipe, such as in underwater applications. In these applications, the collapse rating of the pipe determines the maximum permissible pressure differential between external and internal pressures. The basic formulas for collapsing external pressure applied uniformly to a long pipe are:

1. For thick wall pipe where collapse is caused by compression and failure of the pipe material:

$$
\mathrm{Pc}=\frac{o}{2 \mathrm{Do}^{2}} \quad\left(\mathrm{Do}^{2}-\mathrm{Di}^{2}\right)
$$

2. For thin wall pipe where collapse is caused by elastic instability of the pipe wall:

Where:

$$
\mathrm{Pc}=\frac{2 \mathrm{cE}}{1-v^{2}}\left(\frac{\mathrm{t}}{\mathrm{Dm}}\right)^{3}
$$

Pc = Collapse Pressure (external minus internal pressure), psi
o = Compressive Strength, psi
$\mathrm{E}=$ Modulus of elasticity, psi
v = Poisson's Ratio
Do $=$ Outside Pipe Diameter, in.
Dm = Mean Pipe Diameter, in.
Di = Inside Pipe Diameter, in.
$\mathrm{t}=$ Wall Thickness, in.
c = Out-of-Roundness Factor, Approximately 0.66
Choice of Formula - By using formula 2 on thick-wall pipe, an excessively large pressure will be obtained. It is therefore necessary to calculate, for a given pipe size, the collapse pressure using both formulas and use the lower value as a guide to safe working pressure. For short-term loading conditions, the values of E, o and v from the relative properties charts shown on pages 40-41 will yield reasonable results. See individual materials charts for shortterm collapse pressures at 73° F. For long-term loading conditions, appropriate long-term data should be used.

SHORT-TERM COLLAPSE PRESSURE

Thermoplastic pipe is often used for suction lines or in applications where external pressures are applied to the pipe, such as in heat exchangers, or underwater loading conditions. The differential pressure rating of the pipe between the internal and external pressures is determined by derating collapse pressures of the pipe. The differential pressure rating of the pipe is determined by derating the short-term collapse pressures shown in Table 19.

Collapse pressures must be adjusted for temperatures other than for room temperature. The pressure temperature correction chart (Table 19) used to adjust pipe pressure ratings may be used for this purpose. (See note below table).

Table 19
SHORT-TERM COLLAPSE PRESSURE IN PSI AT $73^{\circ} \mathrm{F}$

1/2	3/4	1	1-1/4\|	1-1/2	2	3	4	6	8	10	12
SCHEDULE 40 PVC											
2095	1108	900	494	356	211	180	109	54	39	27	22
SCHEDULE 80 PVC											
2772	2403	2258	1389	927	632	521	335	215	147	126	117

2772	2403	2258		927	632	521	335	215	147	126	117
SCHEDULE 80 PRESSURE POLYPROPYLENE - IPS											
1011	876	823	612	412	278	229	147	94	65	55	51
SCHEDULE 80 PVDF - IPS											
2936	1576	$120 ¢$	680	464	309	255	164	105	72	61	57
PROLINE PRO 150											
40	40	40	40	40	40	40	40	40	40	40	40
PROLINE PRO 45											
1.6	1.6	16	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
SUPER PROLINE											
202	99	92	44	41	22	5.8	5.8	5.8	5.8	5.8	5.8

NOTE: These are short-term ratings; long-term ratings should be reduced by $1 / 3$ to $1 / 2$ of the short-term ratings.

Vacuum Service - All sizes of Schedule 80 thermoplastic pipe are suitable for vacuum service up to $140^{\circ} \mathrm{F}$ and 30 inches of mercury. Solvent-cemented joints are recommended for vacuum applications when using PVC. Schedule 40 PVC will handle full vacuum up to 24 " diameter.

Laboratory tests have been conducted on Schedule 80 PVC pipe to determine performance under vacuum at temperatures above recommended operating conditions. Pipe sizes under 6 inches show no deformation at temperatures to $170^{\circ} \mathrm{F}$ and 27 inches of mercury vacuum.

The 6 inch pipe showed slight deformation at $165^{\circ} \mathrm{F}$, and 20 inches of mercury. Above this temperature, failure occurred due to thread deformation.

SYSTEMS ENGINEERING DATA
 FOR THERMOPLASTIC PIPING

WATER HAMMER
Surge pressures due to water hammer are a major factor contributing to pipe failure in liquid transmission systems. A column of moving fluid within a pipeline, owing to its mass and velocity, contains stored energy. Since liquids are essentially incompressible, this energy cannot be absorbed by the fluid when a valve is suddenly closed. The result is a high momentary pressure surge, usually called water hammer. The five factors that detemine the severity of water hammer are:

1. Velocity (The primary factor in excessive water hammer: see discussion of "Velocity " and "Safety Factor" on page 62).
2. Modulus of elasticity of material of which the pipe is made.
3. Inside diameter of pipe.
4. Wall thickness of pipe.
5. Valve closing time.

Maximum pressure surges caused by water hammer can be calculated by using the equation below. This surge pressure should be added to the existing line pressure to arrive at a maximum operating pressure figure.

Where:

$$
P s=V\left(\frac{E t 3960}{E t+3 \times 10^{5} D i}\right)^{1 / 2}
$$

$\mathrm{Ps}=$ Surge Pressure. in psi
$\mathrm{V}=$ Liquid Velocity, in ft. per sec.
$\mathrm{Di}=$ Inside Diameter of Pipe, in.
$\mathrm{E}=$ Modulus of Elasticity of Pipe Material, psi
$\mathrm{t}=$ Wall Thickness of Pipe, in.
Calculated surge pressure, which assumes instantaneous valve closure, can be calculated for any material using the values for E (Modulus of Elasticity) found in the properties chart, pages 13-14. Here are the most commonly used surge pressure tables for IPS pipe sizes.

Table 20 - SURGE PRESSURE, Ps IN PSI AT $73^{\circ} \mathrm{F}$

WATER	NOMINAL PIPE SIZE											
(FT/SEC)	1/2	3/4	1	1-1/4	1-1/2	2	3	4	6	8	10	12

SCHEDULE 40 PVC \& CPVC

1	27.9	25.3	24.4	22.2	21.1	19.3	18.9	17.4	15.6	14.6	13.9	13.4
2	55.8	50.8	48.8	44.4	42.2	38.6	37.8	34.8	31.0	29.2	27.8	26.8
3	83.7	75.9	73.2	68.6	63.3	57.9	56.7	52.2	46.6	43.8	41.7	40.2
4	111.8	101.2	97.6	姰. 8	84.4	77.2	75.8	69.8	62.0	68.4	55.8	63.6
6	139.6	126.6	122.0	111.0	105.6	96.5	94.1	87.0	77.6	73.0	69.6	67.0
6	167.4	151.8	146.4	133.2	126.8	115.8	113.4	104.4	93.0	87.6	83.4	80.4

SCHEDULE 80 PVC \& CPVC

1	32.9	299	28.7	26.2	25.0	23.2	22.4	20.9	19.4	18.3	173	17.6
2	6 E .6	683	B7.4	52.4	50.0	48.4	44.18	41.6	38.8	38.6	36.6	362
3	搨?	89.7	86.7	78.8	75.0	69.6	67.2	62.7	682	59.9	6.3 .4	62.8
4	131.6	119.6	114.8	104.8	107.0	92.8	69.8	80.6	77.6	73.2	712	70,4
b	184.6	149.5	143.5	131.0	125.0	118.0	112.0	104.5	97.0	91.6	89.0	88.0
E	197.4	179.4	1722	157.2	150.0	133.2	134.4	125.4	116.4	109.8	106.8	106.6

SCHEDULE 80 POYLPROPYLENE

1	23.6	20.9	20.0	18.1	17.1	15.9	16.2	14.1	13.1	12.2	11.9	11.8
2	47.0	41.8	40.0	36.2	34.2	31.6	30.4	22.2	26.2	24.4	23,8	23.8
3	70.6	82.7	80.0	64.3	51.3	47.4	46.6	42.3	39.3	36.6	36.7	35.4
4	94.0	83.6	80.0	72.4	68.4	832	80.8	58.4	62.4	48.8	47.6	47.2
5	117.6	104.5	100.0	90.5	8 g ¢ 6	79.0	76.0	70.6	65.5	61.0	69.5	69.0
6	141.0	120.4	120.0	100.6	102.6	94.8	912	84.6	78.6	73.2	71.4	70.8

SCHEDULE 80 PVDF

1	26.2	22.6	21.6	19.5	18.6	17.1	18.6	16.3	14.2	13.3	12.9	12.8
2	50.4	45.2	43.2	39.0	37.0	34.2	33.0	30.6	28.9	26.8	26.B	25.6
3	76.6	67. ${ }^{\text {d }}$	64.8	69.5	56.6	51.3	49.6	46.9	42.6	39.9	32.7	38.4
4	100.8	90.4	B6.4	78.0	74.0	69.4	68.0	61.2	58.8	53.2	51.6	61.2
b	128.0	116.0	106.0	97.5	92.6	60.6	82.6	78.6	71.0	68.6	64.6	64.0
8	151.2	135.6	129.6	117.0	111.0	102.8	99.0	91.8	86.2	79.8	77.4	76.8

SUPER PROLINE

1	22.3	19.8	19.6	17.4	17.1	15.5	18.4	12.6	12.5	12.4	12.4	12.4
2	44.6	39.7	39.1	34.7	342	30.9	24.8	26.2	24.9	24.8	24.9	24.8
3	68.8	69.5	68.7	62.1	61.4	46.4	37.2	37.7	37.4	37.2	37.3	37.3
4	99.1	79.4	78.3	69.5	88.5	61.8	49.7	50.3	49.9	49.6	49.8	49.7
5	111.3	992	97.9	86.9	86.6	773	62.1	62.9	62.3	62.0	62.2	62.1
6	133.6	119.0	117.4	1042	102.7	92.8	74.6	76.6	74.8	74.4	74.6	74.6

PROLINE PRO 150

1	15.3	14.1	12.9	12.6	12.8	12.A	12.7	12.7	12.6	12.7	12.7	12.7
2	30.7	28.2	25.9	25.3	26.6	25.6	26.5	26.4	26.5	26.5	25.5	25.6
3	46.0	42.3	38.8	37.9	38.4	30.4	38.2	38.2	38.3	38.2	38.2	38.2
4	61.4	56.4	61.8	60.5	51.2	81.2	61.0	60.9	61.0	60.9	51.0	60.9
5	76.7	70.6	64.7	63.2	64.0	64.0	83.7	82.6	83.8	02.7	63.7	63.7
6	92.1	84.8	77.6	75.8	78.8	76.8	76.5	76.3	78.5	76.4	76.6	76.4

PROLINE PRO 45

1	-	-	-	-	-	7.1	7.0	7.1	7.1	7.0	7.1	7.1
2	-	-	-	-	-	14.2	14.1	14.3	14.2	14.1	14.1	14.1
3	-	-	-	-	-	21.3	21.1	21.4	21.2	21.1	21.2	21.1
4	-	-	-	-	-	28.4	28.1	28.6	20.3	28.2	29.2	28.2
5	-	-	-	-	-	35.5	362	35.7	35.4	35.2	35.3	36.3
6	-	-	-	-	-	42.5	423	42.8	42.5	42.2	42.4	42.3

NOTE: For sizes larger than 12", call your Corr Tech representative.

SYSTEMS ENGINEERING DATA FOR THERMOPLASTIC PIPING

WATER HAMMER (continued)
However, to keep water hammer pressures within reasonable limits, it is common practice to design valves for closure times considerably greater than $2 \mathrm{~L} / \mathrm{C}$.

$$
\mathrm{T}_{\mathrm{c}}>\frac{2 \mathrm{~L}}{\mathrm{c}}
$$

Where: T c = Valve Closure time, sec.
$=$ Length of Pipe run, ft.
$=$ Sonic Velocity of the Pressure Wave= 4720 ft . sec.
Another formula which closely predicts water hammer effects is:

$$
p=a \frac{w}{144 g}
$$

Which is based on the elastic wave theory. In this text, we have further simplified the equation to:

$$
\mathrm{p}=\mathrm{Cv}
$$

Where: $p=$ maximum surge pressure, psi $\mathrm{v}=$ fluid velocity in feet per second $C=$ surge wave constant for water at $73^{\circ} \mathrm{F}$
It should be noted that the surge pressure (water hammer) calculated here is a maximum pressure rise for any fluid velocity, such as would be expected from the instant closing of a valve. It would therefore yield a somewhat conservative figure for use with slow closing actuated valves, etc.
For fluids heavier than water, the following correction should be made to the surge wave constant C.

$$
C^{1}=\frac{(S \cdot G \cdot-1) C+C}{2}
$$

Where: $\mathrm{C}^{1}=$ Corrected Surge Wave Constant S.G. = Specific Gravity or Liquid

For example, for a liquid with a specific gravity of 1.2 in 2 "
Schedule 80 PVC pipe, from Table $43=24.2$

$$
\begin{aligned}
& C^{1}=\frac{(1.2-1)}{2}(24.2)+24.2 \\
& C^{1}=2.42+24.2 \\
& C^{1}=26.6
\end{aligned}
$$

Table 21 - Surge Wave Correction for Specific Gravity

$\begin{array}{c}\text { PIPE } \\ \text { SIZE } \\ \text { (IN.) }\end{array}$	PVC			CPVC		$\begin{array}{c}\text { POLY- } \\ \text { SROPYLENE } \\ \text { SCH }\end{array}$
$\mathbf{1 / 4}$	31.3	34.7	33.2	37.3	-	-
SYNAR						
(PVDF)						
SCH 80						

Proper design when laying out a piping system will

 eliminate the possibility of water hammer damage.The following suggestions will help in avoiding problems:

1) In a plastic piping system, a fluid velocity not exceeding $5 \mathrm{ft} / \mathrm{sec}$. will minimize water hammer effects, even with quickly closing valves, such as solenoid valves.
2) Using actuated valves which have a specific closing time will eliminate the possibility of someone inadvertently slamming a valve open or closed too quickly. With pneumatic and air-spring actuators, it may be necessary to place a valve in the air line to slow down the valve operation cycle.
3) If possible, when starting a pump, partially close the valve in the discharge line to minimize the volume of liquid which is rapidly accelerating through the system. Once the pump is up to speed and the line completely full, the valve may be opened.
4) A check valve installed near a pump in the discharge line will keep the line full and help prevent excessive water hammer during pump start-up.

VELOCITY

Thermoplastic piping systems have been installed that have successfully handled water velocities in excess of $10 \mathrm{ft} / \mathrm{sec}$. Thermoplastic pipe is not subject to erosion caused by high velocities and turbulent flow, and in this respect is superior to metal piping systems, particularly where corrosive or chemically aggressive fluids are involved. The Plastics Pipe Institute has issued the following policy statement on water velocity: The maximum safe water velocity in a thermoplastic piping system depends on the specific details of the system and the operating conditions. In general, 5 feet per second is considered to be safe. Higher velocities may be used in cases where the operating characteristics of valves and pumps are known so that sudden changes in flow velocity can be controlled. The total pressure in the system at any time (operating plus surge or water hammer) should not exceed 150 percent of the pressure rating of the system.

SAFETY FACTOR

As the duration of pressure surges due to water hammer is extremely short - seconds, or more likely, fractions of a second - in determining the safety factor the maximum fiber stress due to total internal pressure must be compared to some very short-term strength value. Referring to Figure 2, shown on page15, it will be seen that the failure stress for very short time periods is very high when compared to the hydrostatic design stress. The calculation of safety factor may thus be based very conservatively on the 20 -second strength value given in Figure 2, shown on page 15-8470 psi for PVC Type 1.
A sample calculation is shown below, based upon the listed criteria:

> Pipe $=1-1 / 4$ " Schedule 80 PVC
> O.D. $=1.660:$ Wall $=0.191$
> HDS $=2000$ psi

The calculated surge pressure for $1-1 / 4$ " Schedule 80 PVC pipe at a velocity of $1 \mathrm{ft} / \mathrm{sec}$ is $26.2 \mathrm{psi} / \mathrm{ft} / \mathrm{sec}$.

CARRYING CAPACITY \＆FRICTION LOSS

TABLE 22

CARRYING CAPACITY AND FRICTION LOSS FOR SCHEDULE 80 THERMOPLASTIC PIPE

FRECTIONLOSS FOUNDS PER SqUARE INCH FRECTION HEAD FEET velocity FEET PER SECOND	$\frac{\text { z }}{3}$								
```friction loss POUNDS PER square \(\operatorname{NCH}\) FRAC TION HEAD FEET VElocity FEET PER SECOND```	$\frac{\frac{z}{N}}{\frac{\Sigma}{N}}$					$\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
FRICTION LOSS POUNDS PER SQUARE INCH FRECTION HEAD FEET VELOCITY FEET PER SECOND	$\frac{\underline{2}}{N}$		$\begin{aligned} & \text { y } 4 \text { 영 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	安占动合 8         $m+$ on 0 ？   ₹8in 㦟   $\rightarrow$ is in or		$\begin{aligned} & \underset{\sim}{\mathbf{z}} \end{aligned}$	$\begin{aligned} & \text { 으으응 } \\ & \text { 응 } \\ & 0 \\ & 0 \end{aligned}$		
FFICTION LOSS POUNDS PER SQUARE INCH FRICTIONHEAD FEET VELOCITY FEET PER SECOND	$\frac{\underline{z}}{\frac{2}{\text { ¢ }}}$		$8 \% 97$ $0-\mathrm{cm}$ 22各委息 त心 ज～  						
```FROCTION LOSS POUNDS PER Square INCH FRICTION HEAD FEET VElocity FEET PER SECOND```	$\left\lvert\, \frac{\underset{z}{2}}{\frac{2}{4}}\right.$	$\left.\right]$							
FRICTION LOSS POUNDS PER SQUARE INCH FRICHON HEAD FEET VELOCITY FEET PER SECOND	$\mid \underline{z}$								
FROCTIONLOSS POUNDS PER SQUARE INCH FRICTION HEAD FEET VELOCITY FEETPER SECOND	$\left\lvert\, \begin{aligned} & \text { Z } \\ & \frac{1}{i} \\ & \hline \mathbf{j} \end{aligned}\right.$								
FRACTION LOSS POUNDS PER SQUARE INCH FRICNON HEAD FEET VELOCITY FEET PER SECOND	$\begin{aligned} & \underline{z} \\ & \end{aligned}$				为俞号号 0000 Ni Ni Nim				
GALLONS PERNNUTE		－Nun ？	$\simeq 2{ }^{\circ}$ ¢ ${ }^{\text {¢ }}$	$7 \% 88$	29888	응융	呙	8\％${ }^{\text {g }} 8$	888

CARRYING CAPACITY \＆FRICTION LOSS

TABLE 23

CARRYING CAPACITY AND FRICTION LOSS FOR SCHEDULE 40 THERMOPLASTIC PIPE

$\begin{aligned} & \text { FPCCHON LOSS } \\ & \text { POUNS PER } \\ & \text { SQUARE INCH } \\ & \text { FROCTION HEAD } \\ & \text { FEET } \\ & \text { VELOCIY } \\ & \text { FEE PER SECOND } \end{aligned}$	$\underline{\text { zi }}$								
FRECTIN LOSS POUNS PER SQUARE INCH FROCTON HEAD FEET VELOCTY FEET PER SECOND	$\left\lvert\, \begin{aligned} & \underline{z} \\ & \stackrel{y}{y} \\ & \end{aligned}\right.$		 응 씅 뿡 答合告男 －－－N	 					
FFACTINLOSS POUNDS PER SQUARE INCH FRECTION HEAD FEET VEETIT FEET PER SECOND	$\frac{\grave{v}}{\mathrm{~N}}$		항응영응 중 궁응은 쓴 －－a c			$\underset{\underset{\sim}{2}}{\underset{\sim}{2}}$			
FRECTIONLOSS POUNDS PER SQUARE NCH FRICTION HEAD FEET VELOTIY FEETPER SECOND	$\left\|\begin{array}{l} \frac{i}{2} \\ \frac{2}{y} \end{array}\right\|$		 	 製管路思 $\infty=\dot{\square}$ 					
FRICTONLOSS POUNDS PER SQUARE INCH FFACTION HEAD FEET velocir FEET PER SECON	$\left\|\begin{array}{l} i \\ \vdots \\ \vdots \end{array}\right\|$				钅彦				
FROCIINN LOSS POUNS PER SQUARE INCH FRICTON HEAD FEET VELOCTY FEET PER SECOND	$\underline{\underline{z}}$								
FRRCTONLOSS POUNDS PER SQUARE INCH FRCTION HEAD FEET VEEOTY FEETPERSECOND	京								
	¢								
GALLONS PER NNUTE PERNVUTE		－Noncoy		\％年足号只：	9888		品8\％ $0^{\circ} 8$		镸解

PROLINE－POLYPROPYLENE 150 FLOW RATES

	```FRICTION LOSS POUNDS PER square INCH FRICTION HEAD FEET VELOCITY FEET PER SECOND```	$\frac{\underline{z}}{\nabla}$		5\％ 888     		$88 \%$   옹용운   88 8\％		$\begin{aligned} & \stackrel{\$}{4} \\ & \stackrel{y}{*} \\ & \stackrel{2}{2} \\ & \stackrel{8}{=} \end{aligned}$		
	```FRICTIONLOSS POUNDS PER SQUARE INCH FRICTION HEAD FEET velociry FEET PER SECOND```	$\frac{\dot{z}}{m}$	후엉 앙   앙 8 合   स 웅		  思愚思罢   －   혼 $\frac{9}{2}$ \％					
		$\frac{\underline{z}}{\frac{2}{N}}$	5흥 형 888 윰 유ํ	 लं 哭可䏡二解	 		$\begin{array}{\|l} \hline 8 \\ \Phi \\ \hline \end{array}$		$8 \% 889$ 号㔯合占品 	
	FRECTIONLOSS POUNDS PER SQUARE INCH FRICTICN HEAD FEET velocity FEET PER SECOND		$88 \div$ ह늤ํ 옹용	戸界あた8 －－लi c क	방응 －の－『－思罢罢思笛				$\text { \% 옹 } 4$ 	$\begin{aligned} & \text { ge } \\ & \text { R } \\ & \text { R } \\ & \text { N } \\ & \frac{2}{5} \end{aligned}$
$\begin{aligned} & \dot{\mathbf{N}} \\ & \mathbf{~} \\ & \mathbf{N} \end{aligned}$	```FRECTION LOSS POUNDS PER SqUARE INCH FRICTION HEAD FEET VElocity FEET PER SECOND```	$\frac{\underline{2}}{\frac{2}{2}}$	$88 \% 8$ 朐号命思 쏘ㅇㅜㅜㄱ	\％ 8 횽 合 $\frac{2}{5}$4			$\begin{array}{ll} 8 \\ \text { 한 } & 8 \\ & 8 \end{array}$	웡 영 찡 힝 8 85 5 8 옹 몽 号管	㫨合客こ禺 	思 $\stackrel{\text { 号 }}{\square}$ 吅
	FROCTION LOSS POUNDS PER SQUARE INCH FFAC TION HEAD FEET VElocity FEET PER SECOND	$\frac{\underline{z}}{\frac{2}{2}}$	立吉葆皆签 of 8 思吉吉 	 勾男然等志 					$\div \stackrel{m}{9} \div \frac{\square}{\square}$ 88 合電	
	FRACTION LOSS POUNDS PER SQUARE INCH FRICTION HEAD FEET VELOCITY FEET PER SECOND	$\frac{\underline{z}}{r}$					 	$8 \equiv \pm \div 8$ 		
	FRICTION LOSS POUNDS PER SQUARE INCH FRICTIONHEAD FEET VELOCITY FEET PER SECOND	$\begin{aligned} & \underline{z} \\ & \vdots \\ & \hline \mathbf{j} \end{aligned}$	 $\circ \approx$ 			\％ 8 8\％ 合合合最 				
	FRICTION LOSS POUNDS PER SQUARE ENCH FRICTION HEAD FEET VELOCITY FEET PER SECOND	$\frac{\mathrm{z}}{\mathrm{~N}}$			영 8 \％형 88558 		 今े 98% 			
	GALLONS PERMNUTE		－ 000 m ，		导等各㽞只	8．88	各 6888	88888		总吕员

PROLINE－POLYPROPYLENE 45 FLOW RATES

TABLE 25

BCJMRE INCH RRCTION HEAD reet VElocity 						¢	发岁各我雨 $\frac{99}{7} \frac{9}{2} 8 \frac{8}{9}$		
FRCTION LOSS POUNOS PER SGUARE NCH FRCTION MEND FEET velocitr reet pel secong						두면형 g\％ 8준옹	多す部8 $\Gamma+\mathrm{NinN}$	988 日月	
FROCTICN LOSS PCUNOS PER BCUARE INCH NOCTION MEAO PEET velocity FEETPER BECOND	증				$\begin{aligned} & 5 \% \\ & 8 \&! \\ & 48 \end{aligned}$	 888눈 	 		
pixction loss POUNOS PER BAUBEE NCH －BCTIONHEAD FEET velocitr reet per second	$\left\lvert\, \frac{\underline{z}}{\infty}\right.$				 8훈훙		28848 ₹8日す。 $\pi=065$		
```mCtIONLOSS POUNOSPER SOUARE INCH #lCTIONHEAO \mathrm{ FETT} vELOCITY```	$\frac{1}{\infty}$			5혁형혐   8985   穴解ま믐					
NOLCTION LOS5 POUNDSPER SCUNRE INCH   NRCTION MEAD feet   vELOCTY   FEET PER BECONO	玉	E \％ 8	웅훔혁몀   发合占名等  	    			̇ ※ ※	万果客   옹오으역      －-7 n	2
mpaction toss POUNDS PER SOUARE INCH FICTIONHEAD reet   vELOCITY FEETPER 8 ECONO	$\underline{\text { z }}$	Б安日   ＂ 88   5月量		上需下紷   988588      －wivem			$\begin{aligned} & \text { 프́ } \\ & \text { © } \end{aligned}$	        －enva	
pioction loss POUNDS PER SQUNRE NCH   FRTCTION HEAD feet   vELOCTY FEET PEA BECOND	$\frac{x}{\bar{y}}$	可혐 형웅      5885	  6に58あ  	뀨용         ल⿵冂卄 7	  －ハのサー    कunco   88588  			889品下   タッ間たた   유요8 8   －むたが	
月16TION Loss POUNDSPRS SGUMRE INCH   FRCTION HEAD reet   velocity FEETPER SECOND	$\underset{y}{x}$	  85 끄웅  	  ※为需令   ～2．   8888   －लबのल	\＄禺高明客   承事要要   जतन जक  		를	5응요   给新综荅   N． 88	各然禺三里      －がのザ	
GRLLONS隐 MINJTE		10ヶ9ำ\％		88288	829888		88888	888888\％	8

## SUPER／PROLINE－PVDF FLOW RATES

	FRCTICN LOSS pounjs 限 saunhe INOT   FRICTICN HEND FEET   vecoory FEETPER SECOND	$\left\lvert\, \frac{\text { x }}{\text { w }}\right.$		5888 염客占占   8路家		  8： 9 우N   －＊Now	88 8 里 8      －लデun   8 8 果 4			
	FRCTON LOSs poundsper STUNRE INCH   FRETION HEAD FEET   velocry FEET PER STCOND	$\left\lvert\, \frac{x}{m}\right.$	Б   梊   ？	     8．8．9ํㅜㄴ	さ上天兩      gR8RE   $--\pi \omega$					
	FRACTION LOSS POUNOS PEA saukne NCT   FRCTIONHENO FEET   velocaty FEET PER STCOND	$\frac{x}{2}$	Б형   s\％   雰菏	     馬䯩高吾						
	FRCTON LOSS POUNOEPEA SOUARE INCH   FRETION HEAD FEET   velocity FEETPER SECOND	$\left\lvert\, \frac{x_{E}^{\prime}}{\text { ev }}\right.$	888   887   示 5 あ	  8 禺思名   ホ移要あ －rame	여여영 －जब ब゙    लका वै	बत 5娄要会券等处号 －$-\infty$ 우				
$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \square \\ & \square \end{aligned}$	FRCTION LOSS mounos per squane inct FRICTION HEND FEET velocaty PEETPER SECOND	$\frac{x}{2}$	इ훙응   令象事营		ल⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌灬丶万力心   7 885名 の一の宁に    5世 0 \％	$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \frac{2}{4} \\ & \frac{8}{2} \end{aligned}$				
	FRICTICN LOS5 PCUNOS PER sCUARE INCH   FRACTIGN HEND FEET   velocitr \％Eet per secano		58ヶロ     	あえにR8 －※だい   日上是を にあった。     	888 우엥 오우훌 ㅃ․․  			져ㅇㅕㅕ영   若部战  		¢
	FRICTION LOSs POUNOS PEA squale NCT   FRICTICN HENO FEET   VELodity Feet pel secono	$\underset{\square}{z}$	$8=8=8$      务下邑导息	28． 8   客害基等      9여영   ふお㤩		$\frac{\text { 를 }}{\circ}$	    			
	FRCTICN LOS5 PCUNOS PER SCU ARE INCH   FRETION HEND FEET   velocity feet per secono	耎	 				多莒？   8．89 9  	  冈ุ श  		
	FRETICN LOS5 PCUNOS PER SOUARE INCH   FRICTIGN HEND FEET   VElocity   FEET PED secand	$\begin{aligned} & z \\ & \frac{y y}{y} \end{aligned}$	  一ron      あどあ。   88888   －लurn			88を害 B릌․․  	9甚戓需雰 88雷点    ल⿵⿰丿⺄⿱㇒⿵冂卄一			
	GALLONS PER MINTTE		－wung ？	上9\％898	949888	28885	288888．8	888888	88888	8



## SYSTEMS ENGINEERING DATA <br> FOR THERMOPLASTIC PIPING

Water Velocity = 5 feet per second
Static Pressure in System $=300$ psi
Total System Pressure = Static Pressure + Surge Pressure:
$P \mathrm{t}=\mathrm{PxPs}$
$=300+5 \times 26.2$
$=431.0 \mathrm{psi}$
Maximum circumferential stress is calculated from a variation of the ISO Equation:

$$
\begin{aligned}
& \qquad \mathrm{S}=\frac{\mathrm{Pt}(\text { Do-t })}{2 \mathrm{t}}=\frac{431(1.660-.191)}{2 \times .191}=1657.4 \\
& \text { Safety Factor }=\frac{20 \text { second strength }}{\text { Maximum stress }}=\frac{8470}{1657}=5.11
\end{aligned}
$$

Table 28 gives the results of safety factor calculations based upon service factors of 0.5 and 0.4 for the 1-1/4" PVC Schedule 80 pipe of the example shown above using the full pressure rating calculated from the listed hydrostatic designstress.

In each case, the hydrostatic design basis $=4000$ psi, and the water velocity $=5$ feet per second.

Comparing safety factor for this 1-1/4" Schedule 80 pipe at different service factors, it is instructive to note that changing from a service factor of 0.5 to a more conservative 0.4 increases the safety factor only by $16 \%$.

$$
100 \times\left(\frac{1-3.38}{4.03}\right)=16 \%
$$

In the same way, changing the service factor from 0.4 to 0.35 increases the safety factor only by $9 \%$. Changing the service factor from 0.5 to 0.35 increases the safety factor by $24 \%$. From these comparisons it is obvious that little is to be gained in safety from surge pressures by fairly large changes in the hydrostatic design stress resulting from choice of more conservative service factors.

Table 28
SAFETY FACTORS VS. SERVICE FACTORS - PVC TYPE 1 THERMOPLASTIC PIPE

PIPE CLASS	SERVICE   FACTOR	HDS   PSI	PRESSURE   RATING   PSI	SURGE   PRESSURE   AT 5 FT/SEC	MAXIMUM   PRESSURE   PSI	MAXIMUMM   STRESS   PSI	SAFETY   FACTOR
$1-1 / 4^{\circ}$ Sch. 80	0.5	2000	520	131.0	651.0	2503.5	3.38
$1-1 / 4^{\circ}$ Sch. 80	0.4	1600	416	131.0	547.0	2103.5	4.03

Pressure rating values are for PVC pipe, and for most sizes are calculated from the experimentally determined long-term strength of PVC extrusion compounds. Because molding compounds may differ in long term strength and elevated temperature properties from pipe compounds, piping systems

## FRICTION LOSS CHARACTERISTICS OF WATER THROUGH PLASTIC PIPE, FITTINGS AND VALVES

## INTRODUCTION

A major advantage of thermoplastic pipe is its exceptionally smooth inside surface area, which reduces friction loss compared to other materials.

Friction loss in plastic pipe remains constant over extended periods of time, in contrast to some other materials where the value of the Hazen and Williams C factor (constant for inside roughness) decreases with time. As a result, the flow capacity of thermoplastics is greater under fully turbulent flow conditions like those encountered in water service.

## C FACTORS

Tests made both with new pipe and pipe that had been in service revealed C factor values for plastic pipe between 160 and 165 . Thus, the factor of 150 recommended for water in the equation below is on the conservative side. On the other hand, the C factor for metallic pipe varies from 65 to 125 , depending upon age and interior roughening. The obvious benefit is that with plastic systems it is often possible to use a smaller diameter pipe and still obtain the same or even lower friction losses.
The most significant losses occur as a result of the length of pipe and fittings and depend on the following factors.

1. Flow velocity of the fluid.
2. The type of fluid being transmitted, especially its viscosity.
3. Diameter of the pipe.
4. Surface roughness of interior of the pipe.
5. The length of the pipeline.

## Hazen and Williams Formula

The head losses resulting from various water flow rates in plastic piping may be calculated by means of the Hazen and Williams formula:

$$
\begin{aligned}
f & =0.2083\left(\frac{100}{C}\right)^{1.852} \times \frac{q^{1.852}}{D i^{4.8655}} \\
& =.0983 \frac{q^{1.852}}{D i^{4.8655}} \text { for } C=150 \\
P & =.4335 f
\end{aligned}
$$

## Where:

$f=$ Friction Head in ft . of Water per 100 ft of Pipe
$\mathrm{P}=$ Pressure Loss in psi per 100 ft . of Pipe
Di = Inside Diameter of Pipe, in.
$\mathrm{q}=$ Flow Rate in U.S. gal/min
C = Constant for Inside Roughness (C equals 150 thermoplastics)


## SYSTEMS ENGINEERING DATA FOR THERMOPLASTIC PIPING

FLOW OF FLUIDS AND HEAD LOSS CALCULATIONS
Tables, flow charts, or a monograph may be used to assist in the design of a piping system depending upon the accuracy desired. In computing the internal pressure for a specified flow rate, changes in static head loss due to restrictions (valves, orifices, etc.) as well as flow head loss must be considered.

The formula in Table 29 can be used to determine the head loss due to flow if the fluid viscosity and density and flow rate are known. The head loss in feet of fluid is given by:

$$
h=: 186 \frac{\mathrm{fLV}}{\mathrm{~d}^{2}}
$$

f , the friction factor, is a function of the Reynolds number, a dimensionless parameter which indicates the degree of turbulence.
The Reynolds number is defined as: $f=\frac{d V W}{12 U}$
Figure 7 below shows the relationship between the friction factor, and the Reynolds number, R. It is seen that three distinct flow zones exist. In the laminar flow zone, from Reynolds numbers 0 to 2000, the friction factor is given by the equation:

$$
f=\frac{64}{R}
$$

Substituting this in the equation tor the head loss, the formula for laminar flow becomes:

$$
\mathrm{h}=\frac{143 \mathrm{ULV}}{\mathrm{Wd}^{2}}
$$

Flow in the critical zone, Reynolds numbers 2000 to 4000 , is unstable and a surging type of flow exists. Pipe lines should be designed to avoid operation in the critical zone since head losses cannot be calculated accurately in this zone. In addition, the unstable flow results in pressure surges and water hammer which may be excessively high. In the transition zone, the degree of turbulence increases as the Reynolds number increases. However, due to the smooth inside surface of plastic pipe, complete turbu-lence rarely exists. Most pipe systems are designed to operate in the transition zone.

## TABLE 29

FORMULAS FOR HEAD LOSS CALCULATIONS			
$\mathrm{R}=\frac{\mathrm{dV} w}{}$	SYMBOL	QUANTITY	UNITS
$\begin{aligned} & 12 \mathrm{u} \\ & 3160 \mathrm{G} \end{aligned}$	B	flow rate	barrels/hour
kd	d	inside diameter	inches
$\mathrm{R}=2220 \mathrm{~B}$	$f$	friction factor	dimensionless
	G	flow rate	gallons/minute
$\mathrm{R}=\quad 22,735 \frac{\mathrm{Qw}}{\mathrm{zd}}$	h	head loss	feet of fluid
When $\mathrm{R}=4000$ :	k	kinematic viscosity	centistokes
$\mathrm{h}=186 \frac{\mathrm{fLV}{ }^{2}}{}$	L	length of pipe	feet
$186 \frac{\mathrm{~d}}{\mathrm{~d}}$	P	pressure drop	$\mathrm{lbs} / \mathrm{in}^{2}$
$\mathrm{h}=.0311 \frac{\mathrm{fLG}}{} \mathrm{~d}^{5}$	Q	flow rate	$\mathrm{ft}^{3} / \mathrm{sec}$.
$\mathrm{fLB}^{2} \mathrm{~W}$	R	Reynolds number	dimensionless
$P=9450 \mathrm{~d}^{2}$	u	absolute viscosity	$\mathrm{lb} / \mathrm{ft}$-sec.
43.5 $\mathrm{fLQ}^{2} \mathrm{~W}$	V	velocity	ft ./sec.
$P=43.5 \quad d^{5}$	w	density	$\mathrm{lbs} / \mathrm{tt}^{3}$
	z	absolute viscosity	centipoises

Fig. 7


TABLE 30

## MANNING EQUATION

The Manning roughness factor is another equation used to determine friction loss in hydraulic flow. Like the Hazen-Williams C factor, the Manning " $n$ " factor is an empirical number that defines the interior wall smoothness of a pipe. PVC pipe has an "n" value that ranges from 0.008 to 0.012 from laboratory testing. Comparing with cast iron with a range of 0.011 to 0.015 , PVC is at least 37.5 percent more efficient, or another way to express this would be to have equal flow with the PVC pipe size being one-third smaller than the cast iron. The following table gives the range of " $n$ " value for various piping materials.

PIPE MATERIAL	" n " RANGE
CAST IRON	$0.011-0.015$
WROUGHT IRON (BLACK)	$0.012-0.015$
WROUGHT IRON (GALVANIZED)	$0.013-0.017$
SMOOTH BRASS	$0.009-0.013$
GLASS	$0.009-0.013$
RIVETED AND SPIRAL STEEL	$0.013-0.017$
CLAY DRAINAGE TILE	$0.011-0.017$
CONCRETE	$0.012-0.016$
CONCRETE LINED	$0.012-0.018$
CONCRETE-RUBBLE SURFACE	$0.017-0.030$
PVC	$0.008-0.012$
WOOD	$0.010-0.013$

## SYSTEMS ENGINEERING DATA <br> FOR THERMOPLASTIC PIPING

## COMPENSATING FOR THERMAL EXPANSION

Thermoplastics exhibit a relatively high coefficient of thermal expansion (see Relative Properties Chart page 13 and 14)-as much as ten times that of steel. When designing plastic piping systems, expansion of long runs must be considered. Installation temperature versus working temperature or summer to winter extremes must be considered.

One area where extreme temperature variations can occur is in a polypropylene drain application. Temperature in waste systems depends on quantity and temperature of the waste liquids discharged into the system. In general, the quantities of wastes discharged through waste systems from laboratories in educational institutions will be relatively small (a few gallons at a time), while industrial laboratories and processing systems may discharge large quantities of very hot or very cold water.

There are several methods of controlling or compensating for thermal expansion of piping systems: taking advantage of off-sets and change of direction in the piping and expansion joints.

1. Offsets-Most piping systems have occasional changes in direction which will allow the thermally induced length changes to be taken up in offsets of the pipe beyond the bends. Where this method is employed, the pipe must be able to float except at anchor points.
2. Expansion Joints—Expansion joints for pressure applications are generally expensive.

The expansion loops and offset tables as shown on following pages have been generated for elevated temperatures as noted beneath the table. If the change in temperature and working temperatures are lower than those used to derive expansion loop and offset tables, the figures will be conservative. These tables can be generated for any temperature and expansion by using the following equations and the modulus of elasticity and working stress at the given temperature.

Assume the pipe to be a cantilevered beam. Deflection of a cantilevered beam is $\Delta \mathrm{L}$

$$
\Delta \mathrm{L}=\frac{\mathrm{P} l^{3}}{3 \mathrm{EI}}
$$

Where:
P = Force Causing the Pipe to Deflect
$l=$ Length of Pipe that is Deflected, in.
$\mathrm{E}=$ Modulus of Elasticity at System Temperature, psi
I = Moment of Inertia
$\mathrm{e}=$ Coefficient of Thermal Expansion, in./in. ${ }^{\circ} \mathrm{F}$
$\Delta \mathrm{T}=$ Change of Temperature, ${ }^{\circ} \mathrm{F}$
$\Delta L=$ Change in Length $=12 e(\Delta T)$, in.
$\mathrm{L}=$ Length of Straight Pipe Run, ft.

Maximum stress equation:

$$
\mathrm{S}=\frac{\mathrm{Mc}}{\mathrm{I}}
$$

Where:
$\mathrm{S}=$ Working Stress at the System Temperature, psi
$\mathrm{M}=$ Bending Moment, $\mathrm{lb} . \mathrm{ft} .=\mathrm{Pl}$
c = Pipe O.D./2, in.
I = Moment of Inertia

By substituting in maximum stress equation:

$$
S=\frac{P l D}{2 I}
$$

Rearranging:

$$
\mathrm{P}=\frac{2 \mathrm{SI}}{l \mathrm{D}}
$$

Rearranging deflection equation:

$$
\mathrm{P}=\frac{3 \mathrm{EI}(\Delta \mathrm{~L})}{l^{3}}
$$

Equating both equations:

$$
\frac{2 \mathrm{SI}}{l \mathrm{D}}=\frac{3 \mathrm{EI}(\Delta \mathrm{~L})}{l^{3}}
$$

Solving for loop length $l$ :

$$
l=\left(\frac{3 \mathrm{ED}(\Delta \mathrm{~L})}{2 \mathrm{~S}}\right)^{1 / 2}
$$

FIGURE 4
Expansion Loop and Offset Configurations for Thermoplastics.


Ötset


Change of Direction

## SYSTEMS ENGINEERING DATA <br> FOR THERMOPLASTIC PIPING

THERMAL EXPANSION COMPENSATION
The change in length of Thermoplastic pipe with temperature variation should always be considered when installing pipe

TABLE 31 - THERMAL EXPANSION $\Delta L$ (in.) - PVC Type 1

TEMP. CHANGE	LENGTH OF RUN IN FEET									
$\Delta \mathrm{T}^{2} \mathrm{~F}$	10	20	30	40	50	60	70	80	90	100
30	. 11	22	. 32	. 43	. 54	. 65	. 76	. 86	. 97	1.08
40	. 14	29	43	. 58	. 72	86	1.01	1.15	1.30	1.44
50	. 18	36	. 54	. 72	. 90	1.08	1.26	1.40	1.62	1.80
60	22	43	. 65	. 86	1.08	1.30	1.51	1.73	1.94	2.16
70	. 25	. 50	. 76	1.01	1.26	1.51	1.76	2.02	2.27	2.52
80	. 29	.58	86	1.15	1.44	1.73	2.02	2.30	2.59	2.88
90	. 32	65	97	1.30	1.62	1.94	2.27	2.59	2.92	3.24
100	. 36	72	1.03	1.44	1.80	2.16	2.52	2.88	3.24	3.60

Example: Highest temperature expected- $120^{\circ} \mathrm{F}$
Lowest temperature expected- $\quad 50^{\circ} \mathrm{F}$
Total Change ( $\Delta T$ )
$70^{\circ} \mathrm{F}$
Length of run- 40 feet
From $70^{\circ} \mathrm{F}$ row on PVC chart read 1.01 in . length change ( $\Delta \mathrm{L}$ ) NOTE: Table is based on: $\Delta \mathrm{L}=12 \mathrm{eL}(\Delta \mathrm{T})$
Where: $e=$ Coefficient of Thermal Expansion
$=3.0 \times 10^{-6} \mathrm{in} . / \mathrm{in} .{ }^{6} \mathrm{~F}$
$\mathrm{L}=$ Length of Run
$\Delta \mathrm{T}=$ Temperature Change
TABLE 32 - THERMAL EXPANSION $\Delta$ L(in.) - CPVC Schd. 80

TEMP. CHANGE	LENGTH OF RUN IN FEET									
$\Delta T^{\circ} \mathrm{F}$	10	20	30	40	50	60	70	80	90	100
20	. 09	18	. 27	. 36	. 46	. 55	. 64	73	82	91
30	. 14	27	. 41	. 55	. 68	. 82	. 96	1.09	1.23	1.37
40	. 18	36	. 55	. 73	. 91	1.09	1.28	1.46	1.64	1.82
50	. 23	46	. 68	91	1.14	1.37	1.60	1.82	2.05	2.28
60	. 27	55	. 82	1.09	1.37	1.64	1.92	2.19	2.46	2.74
70	. 32	64	. 96	1.28	1.60	1.92	2.23	2.55	2.87	3.19
80	. 36	. 73	1.09	1.46	1.82	2.19	2.55	2.92	3.28	3.65
90	. 41	. 82	1.23	1.64	2.05	2.46	2.87	3.28	3.69	4.10
100	. 46	. 91	1.37	1.82	2.28	2.74	3.19	3.65	4.10	4.56

TABLE 33 - THERMAL EXPANSION $\Delta L$ (in.) - Copoly. Poly.

TEMP.   CHANGE   $\Delta$ T $^{\circ} F$										
	10	20	30	40	50	60	70	80	$90^{\prime}$	100
20	.15	.29	.44	.59	.73	.88	1.02	1.17	1.32	1.46
30	.22	.44	.66	.88	1.10	1.32	1.54	1.76	1.98	2.20
40	29	.59	.88	1.17	1.46	1.76	2.05	2.34	2.64	2.93
50	.37	.73	1.10	1.46	1.83	2.20	2.56	2.93	3.29	3.66
60	.44	.88	1.32	1.76	2.20	2.64	3.07	3.51	3.95	4.39
70	.51	1.02	1.54	2.05	2.56	3.07	3.59	4.10	4.61	5.12
80	.59	1.17	1.76	2.34	2.93	3.51	4.10	4.68	5.27	5.86
90	.66	1.32	1.98	2.69	3.29	3.95	4.61	5.27	5.93	6.59
100	.73	1.46	2.20	2.93	3.68	4.39	5.12	5.86	6.59	7.32

lines and provisions made to compensate for this change in length. The following tables have been prepared to assist you in determining this expansion.

TABLE 34 - THERMAL EXPANSION $\Delta \mathrm{L}$ (in.) — PVDF Schedule 80 and Pur-Flo

$\begin{gathered} \text { TEMP } \\ \text { CHANGE } \end{gathered}$	LENGTH OF RUN IN FEET									
$\triangle T^{\circ} \mathrm{F}$	10	20	30	40	50	60	70	80	90	100
20	. 19	. 38	. 58	. 77	. 96	1.15	1.34	1.54	1.73	1.92
40	. 38	. 77	1.15	1.54	1.92	2.30	2.69	3.07	3.46	3.84
50	48	. 96	1.44	1.92	2.40	2.88	3.36	3.84	4.32	4.80
60	. 58	1.15	1.73	2.30	2.88	3.46	4.03	4.61	5.18	5.76
70	67	1.34	2.02	2.69	3.36	4.03	4.70	5.38	6.05	6.72
80	. 77	1.54	2.30	3.07	3.84	4.61	5.38	6.14	6.91	7.68
90	. 86	1.73	2.59	3.46	4.32	5.18	6.05	6.91	7.78	8.64
100	96	1.92	2.88	3.84	4.80	5.76	6.72	7.68	8.64	9.60

The following expansion loop and offset lengths have been calculated based on stress and modulus of elasticities at the temperature shown below each chart. To calculate the proper length of loop at other temperatures the following formula may be used:

$$
l \sqrt{\frac{3 \mathrm{E}(\mathrm{O} . \mathrm{D}) \Delta \mathrm{L}}{2 \mathrm{~S}}}
$$

Where:
$\Delta \mathrm{T}$ = Temperature Change in ${ }^{\circ} \mathrm{F}$
$S=$ Thermal Stress, $p s i=e(\Delta T) E$
$\mathrm{E}=$ Modulus of Elasticity (found in relative properties chart on pages 482 and 483)
$\Delta \mathrm{L}=$ Length Change in inches at $\Delta \mathrm{T}$ (see tables above) $l=$ Total Length of Loop or Oftset

TABLE 35 - EXPANSION LOOPS AND OFFSET LENGTHS, PVC Type 1, Schedule 40 and 80

$\left\lvert\, \begin{aligned} & \text { NOM. } \\ & \text { PIPE } \\ & \text { SIZE } \end{aligned}\right.$	$\begin{gathered} \text { AVERAGE } \\ \text { O.D. } \end{gathered}$	LENGTH OF RUNIN FEET									
		10	20	30	40	50	60	70	80	90	100
		LENGTH OF LOOP ${ }^{\text {c/ }}$ ' ININCHES									
1/2	.840	11	15	19	22	24	27	29	31	32	34
3/4	1.050	12	17	21	24	27	30	32	34	36	38
1	1.315	14	19	23	27	30	33	36	38	41	43
116	1.660	15	22	26	30	34	37	40	43	46	48
11/2	1.900	16	23	28	33	36	40	43	46	49	51
2	2.375	18	25	32	36	41	45	48	52	56	58
3	3.500	22	31	38	44	49	54	58	63	66	70
4	4.500	25	35	43	50	56	61	66	71	75	79
6	6.625	30	43	63	61	68	74	80	88	91	96
${ }^{8}$	8.625	35	49	60	69	78	85	92	98	104	110
10	10.750	39	55	57	77	87	96	102	110	116	122
12	12.750	42	60	73	84	94	109	112	119	126	133

NOTE: Table based on stress and modulus of elasticity at $130^{\circ} \mathrm{F}$.
$\Delta T=500 \mathrm{~F}$
$S=600 \mathrm{psi}$
$\mathrm{E}=3.1 \times 10^{5} \rho \mathrm{pi}$

## SYSTEMS ENGINEERING DATA <br> FOR THERMOPLASTIC PIPING

TABLE 36
EXPANSION LOOPS AND OFFSET LENGTHS, CPVC
Schedule 80

NOM. PIPE SIZE	AVERAGE O.D.	LENGTH OF RUN IN FEET									
		10	20	30	40	50	60	70	80	90	100
		LENGTH OF LOOP * ${ }^{\text {a }}$ - IN INCHES									
1/2	. 840	15	21	26	30	33	37	39	42	45	47
3.4	1.660	17	22	27	31	34	38	40	43	46	48
1	1.315	19	26	32	37	42	46	49	53	56	59
1\%	1.660	21	30	36	42	47	52	56	59	63	67
1/3	1.900	23	32	39	45	50	55	59	64	67	71
2	2375	25	35	43	50	56	62	67	71	75	80
3	3.500	31	43	53	61	68	75	81	86	91	97
4	4.500	35	49	60	69	77	85	92	98	103	109
6	6.625	42	59	73	84	94	103	111	119	125	133
8	8.625	48	67	83	96	107	118	127	135	143	152
10	10.750	54	75	93	107	119	131	162	151	160	169
12	12.750	59	82	101	116	130	143	154	164	174	184

NOTE: Table based on stress and modulus of elasticity at $160^{\circ} \mathrm{F}$.

$$
\Delta T=100^{\circ} \mathrm{F}
$$

$\mathrm{S}=750 \mathrm{psi}$
$\mathrm{E}=2.91 \times 10^{5} \mathrm{psi}$

TABLE 37
EXPANSION LOOPS AND OFFSET LENGTHS

COPOLYMERPOLYPROPYLENE		LENGTH OF RUN IN FEET									
NOM. PIPE SIZE	AVERAGE O.D.	10	20	30	40	50	60	70	80	90	100
		LENGTH OF LOOP "I" IN INCHES									
1/2	. 840	18	25	31	35	40	44	47	50	54	57
34	1.050	20	28	35	40	45	49	53	56	60	63
1	1.315	22	32	39	45	50	55	59	63	67	71
	1.660	25	35	43	50	56	62	65	71	75	79
172	1.900	27	38	46	54	80	66	71	76	81	85
2	2.375	30	42	52	60	67	74	79	85	90	95
3	3.500	36	52	63	73	81	89	95	103	109	115
4	4.500	41	58	71	83	92	101	109	117	124	131
6	6.625	50	71	87	100	112	123	132	142	151	159
8	8.625	57	81	99	114	128	140	151	162	172	181
10	10.750	64	90	111	128	143	156	169	181	192	202
12	12.750	69	98	121	139	158	170	184	197	209	220

NOTE: Table based on stress and modulus of elasticity at $160^{3} \mathrm{~F}$.
$\begin{aligned} \Delta T & =100^{\circ} \mathrm{F} \\ \mathrm{S} & =240 \mathrm{psi}\end{aligned}$
$\mathrm{S}=240 \mathrm{psi}$
$\mathrm{E}=, 83 \times 10^{5} \mathrm{lb} .1 \mathrm{In} .^{2}$

TABLE 38
EXPANSION LOOPS AND OFFSET LENGTHS, PVDF
Schedule 80

NOM.   PIPE   SIZE	$\begin{gathered} \text { AVERAGE } \\ \text { O.D. } \end{gathered}$	LENGTH OF RUN IN FEET									
		10	20	30	40	50	60	70	80	90	100
		LENGTH OF LOOP * ${ }^{\text {" }}$ IN INCHES									
1/2	.840	10	15	18	20	23	25	27	29	31	32
3/4	1.060	11	16	20	23	26	28	30	32	34	36
1	1.315	13	18	22	26	29	31	34	36	38	40
114.	1,660	14	20	25	29	32	35	38	41	43	45
11/2	1.900	15	22	27	31	34	38	41	44	46	49
2	2.375	17	24	30	34	38	42	46	49	52	54

NOTE: Table based on stress and modulus of elasticity at $180^{\circ} \mathrm{F}$.
$\Delta T=100^{\circ} \mathrm{F}$
$\mathrm{S}=1080 \mathrm{psi}$
$E=1.04 \times 10^{5} p 8 i$

## SYSTEMS ENGINEERING DATA <br> FOR THERMOPLASTIC PIPING

These tables are based on:
$F=\mathrm{As}=$ restraining force, lbs.
$A=$ Cross sectional wall area, in. ${ }^{2}$
$S=e(\Delta T) E^{*}$
e=Coefficient of liner expansion*
$\mathrm{E}=$ Modulus of elasticity ${ }^{*}$
$\Delta \mathrm{T}=$ Temperature change, ${ }^{\circ} \mathrm{F}$
"All values are available from relative properties chart on pages 482 and 483

TABLE 39
RESTRAINT FORCE "F" (LB.)-PVC Type 1
Schedule 40 and 80.

$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	SCHEDULE 40 PVC			SCHEDULE 60 PYC		
	CROSS SECTIONAL WALL AREA (INT)	$\begin{gathered} \Delta \mathrm{T}= \\ 50^{\circ} \mathrm{F} \\ \mathrm{~S}= \\ 630 \mathrm{PSI} \end{gathered}$	$\begin{gathered} \Delta T= \\ 100^{\circ} F \\ S= \\ 1260 \mathrm{PSI} \end{gathered}$	CROSS SECTIONAL WALL AREA (INY)	$\begin{gathered} \Delta \mathrm{T}= \\ \mathrm{S} 0^{\circ} \mathrm{F} \\ \mathrm{~S}= \\ 630 \mathrm{PS} 1 \end{gathered}$	$\begin{gathered} \Delta T= \\ 100^{\circ} \mathrm{F} \\ \mathrm{~S}= \\ 1260 \mathrm{PS} \end{gathered}$
1/2	. 250	155	310	. 320	200	400
34	. 333	210	420	. 434	275	550
1	. 494	310	620	. 639	405	810
13.	. 669	420	840	. 882	555	1,110
11/2	. 800	505	1,010	1.068	675	1,350
2	1.075	675	1,350	1.477	930	1,850
3	2.229	1,406	2.810	3.016	1,900	3,800
4	3.174	2,000	4,000	4.407	2.775	5,550
6	6.581	3,515	7,030	8.405	5,295	10,580
8	8.399	5,290	10,580	12.763	8,040	16,060
10	11.908	7500	15.000	18.922	11,920	23,840
12	15.745	9,900	19.840	26.035	16,400	32,800

TABLE 40
RESTRAINT FORCE " ${ }^{2}$ " (LB.), CPVC Schedule 80

$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	CROSS SECTIONAL WALL AREA ( $\mathrm{N}^{2}{ }^{2}$ )	$\begin{gathered} \Delta \mathrm{T}=50^{\circ} \mathrm{F} \\ \mathrm{~S}=805 \mathrm{PSI} \end{gathered}$	$\begin{gathered} \Delta \mathrm{T}=100^{\circ} \mathrm{F} \\ \mathrm{~S}=1610 \mathrm{PSI} \end{gathered}$
1/2	. 320	260	520
3/4	. 434	350	700
1	. 639	515	1,030
114	. 882	710	1,420
11/2	1.068	860	1,720
2	1.477	1,190	2,380
3	3.016	2,430	4,860
4	4.407	3,550	7,100
6	8.405	6,765	13,530
8	12.763	10,275	20,550
10	18.922	15,230	30,460
12	26.035	20,960	41,920

TABLE 41
RESTRAINT FORCE "F" (LB,), Copolymer Polypropylene Schedule 80

$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	CROSS SECTIONAL WALL AREA (IN. ${ }^{1}$ )	$\begin{gathered} \Delta T=50^{6} \mathrm{~F} \\ \mathrm{~S}=550 \mathrm{PS} \mid \end{gathered}$	$\begin{aligned} & \Delta T=100^{\circ} \mathrm{F} \\ & \mathrm{~S}=1110 \mathrm{PS} \mid \end{aligned}$
1/2	. 320	147	294
3/4	. 434	199	398
1	. 639	293	586
1/4/4	. 882	404	808
11/2	1.068	489	978
2	1.477	663	1,325
3	3.016	1,381	2,762
4	4.407	2.018	4,036
6	8.405	3,899	7,698
8	12.763	5,895	11,690
10	18.922	8,666	17,332
12	26.035	11,929	23,848

TABLE 42
RESTRAINT FORCE "F" (LB.), PVDF Schedule 80

$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	CROSS SECTIONAL WALL AREA (IN. ${ }^{2}$ )	$\begin{gathered} \Delta \mathrm{T}=50^{\circ} \mathrm{F} \\ \mathrm{~S}=850 \mathrm{PSI} \end{gathered}$	$\begin{gathered} \Delta \mathrm{T}=100^{\circ} \mathrm{F} \\ \mathrm{~S}=1700 \mathrm{PSI} \end{gathered}$
1/2	320	270	540
3/4	. 434	370	740
1	. 639	540	1,080
114	. 882	750	1,500
11/2	1.068	905	1,810
2	1.477	1,255	2,510
3	3.016	2,565	5,130
4	4.407	3,745	7,490

TABLE 43
RESTRAINT FORCE "F" (LB.), PVDF

PIPE   SIZE	CROSS SECTIONAL   WALL AREA (IN. $\left.{ }^{2}\right)$	$\Delta T=50^{\circ} \mathrm{F}$   $\mathrm{S}=850 \mathrm{PSI}$	$\Delta T=100^{\circ} \mathrm{F}$   $\mathrm{S}=1700 \mathrm{PSI}$
$1 / 2$	0.167	142	284
4	0.213	180	360
1	0.346	294	588
$1 \%$	0.681	579	1158
2	0.876	745	1490
3	1.791	1522	3044
4	2.706	2300	4600


[^0]:    - = Data nof available at ptinting; NR = Not Reocmmended; NA $=$ Not Available (not mamulaclured)
    *Threaded Polypropylene is not recommended for pressure applications and Fuseal drainage systems are not pressure rated.
    "2For treaded joints properly backweided.
    NOTE: The pressure ratings in this chart are based on water and are for pipe and fitings only. Systerns that include valves, flanges, or other weaker items will require derating the entise system.

